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Abstract
Nitrate (NO3) leaching from agriculture represents the primary source of groundwater
contamination and freshwater ecosystem degradation. At the field level, NO3 leaching is highly
variable due to interactions among soil, weather and crop management factors, but the relative
effects of these drivers have not been quantified on a global scale. Using a global database of 82 field
studies in temperate rainfed cereal crops with 961 observations, our objectives were to (a) quantify
the relative importance of environmental and management variables to identify key leverage points
for NO3 mitigation and (b) determine associated changes in crop productivity and potential
tradeoffs for high and low NO3 loss scenarios. Machine learning algorithms (XGboost) and feature
importance analysis showed that the amount and intensity of rainfall explained the most variability
in NO3 leaching (up to 24 kg N ha−1), followed by nitrogen (N) fertilizer rate and crop N removal.
In contrast, other soil and management variables such as soil texture, crop type, tillage and N
source, timing and placement had less importance. To reduce N losses from global agriculture
under changing weather and climatic conditions, these results highlight the need for better
targeting and increased adoption of science-based, locally adapted management practices for
improving N use efficiency. Future policy discussions should support this transition through
different instruments while also promoting more advanced weather prediction analytics, especially
in areas susceptible to extreme climatic variation.

1. Introduction

Nitrogen (N) fertilizer has fueled the intensifica-
tion of agriculture worldwide, allowing humanity to
sustain and increase food production for a grow-
ing population (Godfray et al 2010). Concurrently,
agriculture has also become the major contributor
to global N pollution, with gaseous emissions (i.e.
nitrous oxide [N2O] and ammonia [NH3]), sur-
face runoff and leaching being the major loss path-
ways from farming systems. Among these pathways,
nitrate (NO3) leaching represents the primary source
of groundwater contamination and coastal hypoxia
(Howarth et al 2021). Despite recent improvements
in N use efficiency (NUE) in some regions (Zhang

et al 2015), N leaching losses continue to pose a seri-
ous environmental and human health threat in many
parts of the globe (Ward et al 2018, Uwizeye et al
2020).

Both natural and anthropogenic factors influence
NO3 leaching, including soil properties, climate and
farming practices. Reports onN leaching are extensive
(Padilla et al 2018), with previous work highlighting
crop choice, N fertilizer management (rate, source,
timing and placement), tillage, cover crops and soil
texture and carbon as influential factors, among oth-
ers (Zhou and Butterbach-Bahl 2014, Eagle et al 2017,
Thapa et al 2018, Hess et al 2020, Ying et al 2020,
Preza-Fontes et al 2021). Regardless of experimental
conditions, N fertilizer rate is a particularly strong
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predictor of N losses (Lawlor et al 2008, Xia et al
2017, Wang et al 2019, Huddell et al 2020). However,
emphasis on reducing N rate without considering
impacts on yield may negatively influence crop pro-
ductivity (Jeong and Bhattarai 2018, Martinez-Feria
et al 2019), creating potential tradeoffs between envir-
onmental benefits, food security and farmer income.
As an alternative approach, increases in crop pro-
ductivity and associated N demand may represent a
direct pathway for reducing N leaching, whereby effi-
cient utilization of soil and fertilizerN supply contrib-
utes to high grain yields (and N removal) while sim-
ultaneously decreasing the risk for N losses (Cassman
et al 2002, Gardner and Drinkwater 2009). Indeed,
recent publications provide evidence that the com-
bination ofN fertilizer inputs and grainN removal are
important predictors of N losses to the environment
(McLellan et al 2018, Eagle et al 2020, Tamagno et al
2022). Yet, the relative impact ofNmanagement prac-
tices compared to other important drivers of N losses
such as climatic conditions and soil texture, which are
beyond the farmer’s control, remain unclear.

Field and watershed hydrology strongly influence
N leaching, especially the magnitude, frequency and
distribution of rainfall (Austin et al 2004, Bowles et al
2018). Changes in hydrological cycles due to climate
change are expected to negatively impact water qual-
ity. For instance, in the United States (U.S.) annual
average precipitation has increased by 4% since 1901,
yet the frequency and intensity of heavy precipitation
events has increased more than 20% in the Midw-
est and Great Plains regions (Easterling et al 2017,
Hayhoe et al 2018). In Europe and Canada, current
and future N losses are linked to increased precipit-
ation and temperature changes (Jabloun et al 2015,
He et al 2018, Rozemeijer et al 2021). Moreover,
years with low precipitation or drought enable the
accumulation of NO3 in soil that is ‘flushed’ in the
subsequent year, potentially causing above-average
NO3 losses (Murphy et al 2014). Given increasing
interannual variability in precipitation and extreme
weather events, an integrated analysis accounting for
the relative importance of climate, soil and man-
agement effects will help prioritize research pro-
grams and funding to find solutions for decreasing
N pollution.

To overcome challenges in measuring NO3 losses
from individual fields, predictive models provide
a quantification alternative proven to be reason-
ably accurate and an effective decision-support tool
for crop management (Dayyani et al 2010, Moriasi
et al 2013, Gallardo et al 2020). Some drawbacks to
process-based simulation models include (a) labor-
intensive fieldmeasurements for accurate site-specific
calibrations of parameters, and (b) large data input
requirements to account for pedoclimatic conditions,
crop characteristics and other management prac-
tices (Basso and Liu 2019, Puntel et al 2019). In

viewof increasing data availability and computational
power in agriculture, machine-learning methods can
improve predictive power and elucidate soil, weather
and management effects on biogeochemical N fluxes
(Philibert et al 2013, Saha et al 2021, Spijker et al
2021). Likewise, new developments in model inter-
pretation methods provide another layer of know-
ledge to understand the causes behind machine-
learning predictions (Doshi-Velez and Kim 2017).

Environmental policies aiming to prevent extern-
alities from agricultural activities generally target
farmers, but the consequences of climatic events are
sometimes overlooked or hard to prevent (Bagley
et al 2015, Abendroth et al 2021). In this study, we
used machine-learning models to (a) account for
interactions among soil, weather and management
contributing to large variation in N leaching across
studies in rainfed temperate-region cereal crops, and
(b) identify the major leverage points for N leach-
ing mitigation and building resilience in the face of
climate change. Our specific objectives were to (a)
quantify the relative importance of environmental
and management drivers of NO3 leaching loss and
(b) determine associated changes in crop productiv-
ity and potential tradeoffs for high and low NO3 loss
scenarios.

2. Materials andmethods

2.1. Data collection
The database consisted of a global literature review
previously used by Tamagno et al (2022). Briefly, we
conducted a comprehensive literature search using
Elsevier’s Scopus database to retrieve peer-reviewed
articles reporting NO3 leaching losses (kg N ha−1)
from experimental fields in temperate climate regions
for rainfed cereals. The searchwas restricted to studies
meeting certain criteria: (a) experiments were pub-
lished between 1990 and 2020, (b) measurements
were collected from field trials, results reported (c)
grain yield, (d) N fertilizer rate, and (e) NO3 losses
on an area-scaled basis. Due to differences in soil
hydrology and the risk of N leaching, studies on rice
were not included. A full description of data collec-
tion, specific search terms and screening details can
be found in Tamagno et al (2022) together with the
complete list of publications.

The database was built by extracting additional
variables reported in the studies related to crop man-
agement, soil, weather, NO3 leaching methodology
and crop N removal (table 1). Management variables
were grouped based on the number of observations
for each category. Crop type was grouped in corn
(Zeamays L.), wheat (Triticum aestivum L.) and other
types of crops that were less frequently reported (i.e.,
barley, oats, rye, sorghum). In a similar fashion, fer-
tilizer placement, timing and source were classified
following criteria to create representative groups of
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Table 1. Variables used in the analysis, their abbreviation, type, levels and units.

Category Variable Abbreviation Type Unit/Levels

Management Crop type Crop_Type Categorical Corn, Wheat, Other
Fertilizer placement Placement Categorical Broadcast, Incorporated,

Other
Fertilizer source Source Categorical Ammonium nitrate,

Anhydrous ammonia,
Organic, UAN, Urea, Other

Fertilizer timing Timing Categorical Pre-Season, In-season,
Pre-Sowing

Nitrogen fertilizer rate NRatekgNha Quantitative kg N ha−1

Previous crop Previous_Crop Categorical Annual legumes, cereals,
other

Tillage system Tillage Categorical Till, No-Till

Soil Clay content Clay Quantitative %
Sand content Sand Quantitative %
Silt content Silt Quantitative %
Soil Carbon SoilC Quantitative g kg−1

Soil pH pH Quantitative —

Weather Annual precipitation AnnualPrecip Quantitative mm yr−1

Extreme precipitation
events

EPE.current Quantitative Number of precipitation
events higher than
25 mm d−1 in the year

Annual mean
temperature

Tmean.current Quantitative ◦C

Precipitation from the
previous year

PP_prev Quantitative mm yr−1

Methodology NO3 methodology Method Categorical Lysimeter, suction cups, tile
drainage

N output N removal N_removal Quantitative kg N ha−1

balanced observations. Fertilizer timing was grouped
in three categories where ‘In-season’ applications
included fertilizer applied after crop emergence dur-
ing the season, ‘Pre-sowing’ are applications that were
done before planting or before emergence and ‘Pre-
season’ includes application done in fall of the pre-
vious year. Soil characteristics (i.e., clay, sand, silt
content, soil carbon, soil pH), annual precipitation
and annual mean temperature were retrieved from
publications. When missing, soil data were retrieved
from SSURGO (Survey Staff Soil 2020) for experi-
mental sites in the U.S. and from ISRIC’s Soil Grids
(Hengl et al 2017) for other locations using the lat-
itude and longitude of the experimental site. Miss-
ing annual precipitation and mean temperature were
retrieved together with precipitation from previous
year using the weather database fromNASA-POWER
(Sparks 2018) using the coordinates from each site
(Correndo et al 2021a). Extreme precipitation events
(EPE) were calculated as the number of days dur-
ing the year where precipitation was greater than
25 mm d−1 (Puntel et al 2019, Correndo et al 2021b).

2.2. Data analysis
2.2.1. Model setup
Wedeveloped aNO3 predictionmodel using eXtreme
Gradient Boosting (XGBoost), a scalable machine
learning system for gradient boosted decision tree
characterized for its model performance, computa-
tional speed, flexibility and scalability (Chen and
Guestrin 2016). XGBoost works as an ensemble of
decision trees grown in an adaptiveway becausemod-
els are added sequentially to enhance the perform-
ance of existingmodels until no further improvement
is possible. The algorithm introduces an additional
regularization term to prevent over-fitting and imple-
ments parallel tree boosting,making the learning pro-
cess even faster. As such, it has become an attractive
alternative among gradient-boosting implementa-
tions and is an increasingly popular tool in the agro-
nomic field by outperforming othermachine learning
alternatives. XGBoost has been used to predict bio-
mass (Mansaray et al 2020, Bahrami et al 2021), soil
properties (Andrade et al 2020), crop yield and NO3

leaching losses (Shahhosseini et al 2019).
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We implemented the ‘caret’ package (Kuhn 2021)
in R software (version 4.1.2; R Core Team 2021) for
model training, tuning hyper-parameters and valid-
ation. The dataset was randomly divided into train-
ing and testing sets representing 80% (n = 770) and
20% (n= 191), respectively. A repeated 10-fold cross-
validation scheme was used as a resampling method
on the training set to tune the model using a grid-
search approach with different parameter combina-
tions. In this cross-validation method, the data are
randomly divided into ten groups, and for each iter-
ation out of 10, nine groups are selected to train
the model whilst the remaining one is used for val-
idation. This procedure was repeated three times
but with different splits each time. In this way,
the effect of tuning parameters was evaluated on
all possible models and we selected the best one
across these combinations using the lowest rootmean
square error (RMSE) as the performance metric. In
addition, the coefficient of determination (R2) and
the mean absolute error (MAE) of the model are
presented. The testing dataset was used to compute
the prediction error of the final model by plotting
the observed vs predicted values and calculating R2

and RMSE.

2.2.2. Model interpretability
We used feature importance analysis and accumu-
lated local effect (ALE) plots as interpretable machine
learning methods to display model predictions and
the magnitude of how different variables influence
NO3 leaching. We implemented the R package ‘iml’
(Molnar et al 2018) to perform these analyses. The
feature importance analysis ranks the variable input
of the model according to the increase in the pre-
diction error of the model after permuting the fea-
ture (Fisher et al 2019). Variables ranking among the
top five in our analysis were then used to create the
ALE plots which illustrate the effect of each vari-
able compared to the predicted NO3 leaching aver-
age (28.1 kg N ha−1). Briefly, a feature is subdivided
into intervals of similar number of observations. The
ALE method calculates the average difference in pre-
dictions for each interval and aggregates the aver-
age effects across all intervals (see details in Apley
and Zhu 2020).

Lastly, to explore potential tradeoffs between N
leaching and yield across different crop categories,
we first calculated relative grain yield by expressing
each yield observation as a proportion of the max-
imum value in each study. We then subset observa-
tions for each of the five most influential variables
determined above into 25% and 75% quantiles (bot-
tom and top 25% of data), which corresponded with
scenarios leading to the lowest and highest N leach-
ing predictions. For these two scenarios, relative yields
were analyzed using violin plots, while also depicting
the average N leaching predictions from ALE values
for each group.

3. Results

3.1. Model performance
The average NO3 leaching from the dataset was
27.7 ± 22.9 kg N ha−1 and varied between 0.07 and
138.7 kg N ha−1 with a median of 22.0 kg N ha−1.
Model training using a repeated cross-validation
scheme and grid-search approach resulted in 243 iter-
ations using the training subset. Based on the low-
est RMSE, the optimized model presented accept-
able performance metrics (RMSE = 12.1 kg N ha−1,
R2 = 0.71 andMAE= 8.1 kgN ha−1). Likewise, when
testing the model using a subset of unseen observa-
tions (20%of data), prediction accuracywas also high
for the most frequent range of observations (leach-
ing < 60 kg N ha−1) (figure 1). While there was more
variation in extreme values (>60 kg N ha−1), this
represented only 8% of testing data. This model val-
idation step showed similarly satisfactory prediction
metrics (RMSE = 12.9 kg N ha−1, R2 = 0.76 and
MAE= 8.7 kg N ha−1).

3.2. Feature importance andmodel predictions
The importance of a variable was quantified by the
increase in prediction error (loss of MSE) follow-
ing permutation. The feature importance analysis
(figure 2(a)) reflected a higher relative importance
of hydrologic factors versus crop management prac-
tices in predicting N leaching. Among the top five
variables ranked in our analysis, annual precipitation
was the most influential variable associated with an
error increase of 4.6 (kg N ha−1)2 after permutation,
followed by EPE and precipitation in the previous
year. After all these three measures of precipitation,
fertilizer N rate and N removal were the fourth and
fifth most important variables. In contrast, variables
related to soil texture (sand, silt, clay), crop man-
agement (tillage, crop type and previous crop and
N source, timing and placement) and experimental
methodology (method) were less influential.

When comparing ALE plots (figures 2(b)–(f)),
annual precipitation (figure 2(b)) showed the
sharpest increase in predicted N leaching from dry
years (below 600 mm yr−1) to wet years (above
1000 mm yr−1). The magnitude of impact was
also the greatest for annual precipitation compared
to other variables, with predictions varying up to
±12 kg N ha−1 from the average (this range repres-
ents more than 80% of the average model prediction
of 28.1 kg N ha−1). Likewise, more than three EPE
resulted in a spike of NO3 leaching up to 6 kg N ha−1

at 9 EPE (figure 2(c)). Precipitation from the previous
year had an inverse impact (figure 2(d)), where a dry
previous year increased predicted N leaching by up
to 7 kg N ha−1 while the opposite occurred for a wet
previous year. Overall, these three variables depict
how intra-annual variability (current and previous
year) and the magnitude of individual precipitation
events drive NO3 losses.
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Figure 1.Model performance for testing data (n= 191, 20% of observations). Observed versus predicted values for NO3 leaching,
including coefficient of determination (R2), mean absolute error (MAE) and root mean square error (RSME). Dashed line
represents the 1:1 line.

Figure 2. Feature importance analysis of the XGboost model (a) and ALE plots showing model predictions for the top five
features (b)–(f). Bars in a represents the prediction loss of the model expressed in units of mean squared error (MSE) and
horizontal bars are the 5% and 95% quantile importance distribution. Solid lines in ALE plots and short vertical lines (b)–(f)
represent the predicted effect of that particular feature on NO3 leaching (kg N ha−1) centered to the average prediction of the
model (28.1 kg N ha−1) and each observation in the dataset, respectively. References for feature names are in table 1.

Predicted N losses increase with fertilizer N rates,
reaching a maximum of 10 kg N ha−1 above the
average prediction (figure 2(e)). Other aspects of

fertilizer N management (source, timing and place-
ment) influenced N leaching by a lower magnitude
compared with N rate and precipitation-related
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Figure 3. ALE plots showing model predictions for the N fertilizer placement, source and timing. Bars represents the predicted
effect of that particular feature on NO3 leaching (kg N ha−1) centered to the average prediction of the model (28.1 kg N ha−1).

Figure 4. Relative grain yield for the 25% and 75% quantile (Q) observations of top five most important variables (figure 2(a)).
Numbers below violin plots are the average of the predicted NO3 leaching from the ALE plots for the 25% and 75% quantile of
the observations (figures 2(b)–(f)).

variables (figure 3). Yet, several management prac-
tices showed potential for mitigation. For placement,
only when fertilizer was incorporated NO3 leach-
ing losses were reduced in ∼1 kg N ha−1. Timing
practices that reduced N losses included in-season
and pre-sowing applications, whereas pre-season
applications increased NO3 leaching. All N fertil-
izer sources except urea ammonium nitrate (UAN)
increased N losses, however, this may be more related
to the timing of N application than the source. In our
study, a large proportion of UAN observations were
in-season applications (figure S1 (available online
at stacks.iop.org/ERL/17/064043/mmedia)), which
is consistent with current farmer practice because
of its easier manipulation, storage and equipment

adaptation. For cropN removal (figure 2(f)), N leach-
ing decreased ∼4 kg N ha−1 when crop N removal
was higher than 130 kg N ha−1, whereas N leaching
generally remained neutral or increased below this
threshold.

3.3. Yield response under low and high N loss
scenarios
When comparing crop yields for scenarios of low
and high N leaching predictions (corresponding with
the bottom and top quantiles for each influential
variable), effects differed depending on the variable
(figure 4). For annual precipitation, EPE and previ-
ous year precipitation, we found no differences in rel-
ative crop yield but rather an overlap of mean values

6
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and observations. However, a large yield penalty was
observed for the N rate variable, where relative yields
for the 75% quantile category (high leaching observa-
tions) were 16% greater than the 25% quantile (low
leaching observations). In contrast, a synergy was
observed for the N removal variable, where a 1.5-fold
relative difference was found when comparing the
75%–25% quantiles (this represented low and high
leaching, respectively, due to the inverse relationship
for N removal). Despite the larger difference in rel-
ative yields, the change in average N loss predictions
between the 75% and 25% quantiles was greater for
N rate than N removal variables (1.8- and 1.5-fold,
respectively).

4. Discussion

Despite decades of research and policy initiative, the
global challenge of N pollution continues to grow
(Houlton et al 2019) requiring urgent action from
the scientific community and policy makers (Sutton
et al 2021). Here, we present an integrated assess-
ment of N leaching in response to agronomic prac-
tices, soil properties and climate from a comprehens-
ive global dataset of rainfed cereal crops. Despite the
large amount of variability among studies (figure 1),
the interpretable machine learning approach could
predict NO3 leaching at the field-level with an accept-
able level of accuracy. Similar methods have been
used to study N2O emissions (Philibert et al 2013,
Pan et al 2021, Saha et al 2021) where N rate and
hydrological factors were also found to be influential.
Yet for NO3 leaching, machine learning studies have
mostly been restricted to specific regions or countries
(Shahhosseini et al 2019, Spijker et al 2021) or lim-
ited in the number of management variables evalu-
ated (Ying et al 2020).

The analysis implemented here provides new
insights because three of the fivemost influential vari-
ables were not included in previous syntheses (i.e.,
EPE, previous year precipitation andN removal). The
main findings highlight precipitation as the key driver
of N leaching in agricultural fields, illustrating how
climate change and increasing severity of precipita-
tion in some regions of the world (Masson-Delmonte
et al 2021) will further magnify water quality prob-
lems. In addition, we found a lower relative impact
of soil properties andmanagement factors considered
in this study (table 1) compared to those for pre-
cipitation and N inputs and outputs, suggesting
well-documented crop management practices for N
loss mitigation (discussed below) should be targeted
to high-risk weather scenarios for greatest impact.
Lastly, the observed tradeoffs between grain yield and
N leaching under highN rates underscore the need for
more efficient use of N inputs in order to meet grow-
ing cereal demand and combat the trend of increasing
global N consumption in agriculture (Bodirsky et al
2014, Springmann et al 2018, Omara et al 2019).

Previous work has suggested that climate change,
especially extreme precipitation events, will increase
agricultural N losses and freshwater N pollution
(Sinha et al 2017, Bowles et al 2018). Our study sup-
ports this prediction with field-level empirical data,
and is consistent with long-term research at indi-
vidual sites (Kladivko and Bowling 2021) and small
watersheds (Bauwe et al 2020), where uncontrol-
lable factors of weather and precipitation regulate N
losses more than management practices or soil prop-
erties. Given the urgent need to decrease the envir-
onmental footprint of food production, local and
national plans are being developed to reduce nutri-
ent losses as a key pillar of agricultural sustainabil-
ity, including in the European Union (EU Commis-
sion 1991, 2000), China (Ji et al 2020) and the U.S.
(USDA 2021). Early adoption of policies in Europe
has successfully reduced discharges of N loads in the
coasts of the Netherlands (Fraters et al 2021) or the
Baltic Sea (Iho et al 2015). However, our results indic-
ate higher amounts of N leaching may occur with
increased frequency of extreme weather events char-
acteristic of climate change. The associated risks for
nutrient pollution will present a key challenge, poten-
tially decreasing the effect of mitigation practices,
especially for intensive grain production regions with
heavy reliance on external N inputs (Raymond et al
2012). For example, analysis of future precipitation
patterns in the U.S. suggests that N inputs would need
to decrease bymore than 30% to offset the anticipated
increase in riverine N loading due to extreme precip-
itation events (Sinha et al 2017).

While the factors in table 1 have been invest-
igated in other studies, their interactions have not
been accounted for using machine learning models
with a field-level dataset covering a range of soil,
climate and management conditions. This approach
may explain some unexpected results. For example,
soil texture and hydrology are often cited as a risk
factor for N leaching, particularly sandy compared
to fine-textured soils (Cameron et al 2013, Huddell
et al 2020). Meanwhile, other studies have repor-
ted an effect of soil C and pH on N leaching (Ying
et al 2020). The methodology to measure N leach-
ing often constitutes a challenge for accurate observa-
tions and a source of variation (Zotarelli et al 2007),
but was not evident in our results. The lower rank-
ing of these variables in in our study may be due to
the inclusion of three independent categories of pre-
cipitation (figure S2), each explaining a large amount
of variation. For example, the magnitude of change
for N leaching predictions spans 24 and 10 kg N ha−1

for annual precipitation and EPE (figure 2), respect-
ively, but only around 5 kg N ha−1 for all N fertilizer
sources, timing and placement variables combined
(figure 3). Shahhosseini et al (2019) also reported that
weather more strongly influenced N leaching com-
pared to soil or management factors in their case
study of the US Midwest.
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Including crop productivity in our analysis helped
address an important knowledge gap, as the twomost
important management-related factors were N rate
andN removal. Fine-tuning fertilizerN inputs is often
a management recommendation (Fageria and Baligar
2005, Cao et al 2018), especially to avoid high N
rates exceeding crop demand which can trigger expo-
nential N losses (Zhou and Butterbach-Bahl 2014,
Zhao et al 2017, Wang et al 2019). The importance
of N removal in this analysis provides further evid-
ence that optimizing crop productivity is associated
with efficient recovery of plant-available soil N and
decreased risk of N leaching. In terms ofmanagement
implications, N rate is an a priori decision, whereas
N removal is a post hoc outcome resulting from a
suite of management actions that include individual
components tested in our model and others. Taken
together, these results suggest the most effective man-
agement strategy for reducing N losses is to boost
yields (N removal) while limiting N inputs, which
also aligns with farmers’ economic goals. Although,
increasing yield potential could represent a challenge
in some regions of the world where yield stagnation
has been observed (Grassini et al 2013). Furthermore,
farmers face a major challenge in precisely meeting
crop N demand while controlling the fate of N to
reduce potential losses, which is why they tend to
apply excess N targeting crop physiological require-
ments to achieve profitable yields.

In this context, our results highlight the need to
address the tradeoff between N leaching and yield
through improvements in NUE. Relative yields were
not different between high and low N leaching scen-
arios for precipitation-related variables. However,
high N fertilizer inputs contributed to elevated N
losses and a 16% increase in productivity compared to
the low N leaching scenario (figure 4). To avoid lim-
itations to crop growth without increasing N inputs
(figure 2(e)), practices targeting the right rate, source,
timing and placement of N fertilizer are the founda-
tion of improved management (Fageria and Baligar
2005, Ladha et al 2020). Although variables other
than N rate had less impact on N leaching in our
study, they are undoubtedly important for improv-
ing yield and thereby cropN removal. Similarly, prac-
tices that improve internal N cycling (e.g., crop rota-
tions, cover crops, improved genetics and others)
have the potential to reduce the need for external N
inputs and improve NUE in many parts of the world
(Mueller et al 2019, Cassman and Dobermann 2021).
We did not specifically include NUE as a variable in
our analysis because limited experiments had con-
trol plots without fertilizer, which provide a meas-
ure of soil N supply. However, partial N balance (cal-
culated as N fertilizer rate minus crop N removal)
captures both of these components and is increas-
ingly used as an indicator for N losses (McLellan et al

2018, Eagle et al 2020, Tamagno et al 2022). Our res-
ults support the use of these two variables, which
can be easily tracked at the field-level, for N leaching
predictions.

Here we present a retrospective analysis of sea-
sonal climate trends, but the ability to translate
precipitation-related results into actionable man-
agement strategies is currently limited by the pre-
dictive ability of long-term forecasts, which are
not accurate enough to make seasonal manage-
ment decisions a priori. Therefore, a key recom-
mendation of this work is to prioritize the adoption
of science-based, locally-adapted crop management
practices for improving NUE and reducing N losses
in regions with high-risk weather scenarios. This
will become especially significant in light of climate
change leading to higher variability and frequency
of extreme weather events (e.g. El Niño events;
Trenberth 2011, Buishand et al 2013), also recog-
nized in the latest IPCC report (Masson-Delmonte
et al 2021). Remote sensing tools that measure spec-
tral properties from plants to detect crop N defi-
ciencies at different scales (leaves or canopies) are
useful for site-specific N recommendations and in-
season N management (Dellinger et al 2008, Barker
and Sawyer 2010). Likewise, given the increasing fre-
quency of extremeweather andhigh inter-annual pre-
cipitation variability, our results strengthen the idea
that wet years following dry years can substantially
increase N leaching. Inclusion of pre-fertilization soil
N testing after a dry season could help farmers adjust
N rates and reduce uncertainty on the soil N sup-
ply potential in the following season (Andraski and
Bundy 2002). In areas where precipitation and the
number of EPE are expected to increase, enhanced
efficiency fertilizers such as nitrification inhibitors
or controlled/slow release fertilizers are alternatives
to match crop demand with timing of N availab-
ility (Naz and Sulaiman 2016) reducing the risk
of losses and thereby increasing NUE (Qiao et al
2015). Dynamic simulation models, such as Adapt-
N (Melkonian et al 2008), are another alternative to
estimate cropping system N dynamics and fertilizer
needs. These models integrate real-time weather con-
ditions with soil information andmanagement which
has potential to reduce N inputs (Sela and van Es
2018) and NO3 leaching losses (van Es et al 2020).

We acknowledge there are several limitations
of this study, such as not addressing the season-
ality of precipitation or the timing of N leaching
events across the year. Our dataset includes temper-
ate regions where N leaching primarily occurs during
winter and spring due to residual soil NO3 remain-
ing after harvest (Di and Cameron 2002), but this
may differ in other environments with wetter con-
ditions during the growing season. For example, a
similar study focusing on tropical regions reported
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that the combination of soil texture and water and
N inputs controlled N leaching (e.g., Huddell et al
2020), indicating that future work is necessary to
understand if the variables studied here are likely to
influence N leaching events elsewhere in the same
manner. There are limitations in geographic cov-
erage, crops and management practices employed
in our dataset, thus more field experiments sim-
ultaneously investigating crop yield and N leach-
ing losses are needed to address these imbalances
(see Tamagno et al 2022). Finally, even though
machine learning models account for multiple, inter-
related factors to develop robust predictions, there
are unexplored high-order interactions that need fur-
ther attention (e.g., mitigation actions for high N
rate, precipitation, or EPE environments). Accord-
ingly, interpretable predictions of influential vari-
ables in this study can contribute to the develop-
ment of robust hypotheses to test in future field
experiments.

Ultimately, management practices for reducing
N leaching and increasing NUE must be developed,
adapted, and implemented by researchers and farm-
ers at the local level to account for the biophysical,
social, and political constraints of each farming sys-
tem and agroecological context. While this is bey-
ond the scope of the present study, a wide body
of research outlining effective management practices
exists including improved N management (Struffert
et al 2016, Eagle et al 2017), adaptive N manage-
ment based on soil testing and in-season cropN status
(Shanahan et al 2008), cover crops (Rasse et al 2000,
Malone et al 2014), or irrigation (Quemada et al
2013). However, reducing the pool of N susceptible
to losses will also require a systemic approach bey-
ond the crop growing season. Adoption of no-till or
reduced-till, more diverse crop rotations (e.g. inclu-
sion of perennial crops; Raymond et al 2012, Bowles
et al 2018), and intensification of land to minim-
ize fallow season (e.g. winter cover crops) will be
among the beneficial practices to maximize N reten-
tion in fields (Grant et al 2002) and build resili-
ence in agroecosystems to severe weather. Despite this
knowledge, a main barrier is farmer adoption, which
can have different causes such as socio-economic
circumstances, access to information, operational,
or political-economic structure (Rejesus et al 2013,
Cavanagh et al 2017, Arslan et al 2020, Houser and
Stuart 2020). Given challenges to adoption, economic
policy incentives could focus on promoting these
practices under certain climate conditions to support
targeted, cost-effective N loss mitigation programs
(e.g. reducing N rates or planting cover crops follow-
ing dry years, or supporting enhanced efficiency fer-
tilizers in areas with high EPE). The implementation
of various incentives has proven to be a strong motiv-
ation for farmers to adopt sustainable practices for the
benefit of either their farms, the environment, or both
(Piñeiro et al 2020).

5. Conclusions

Reducing agricultural N losses in a changing climate
will require better understanding of agronomic
management, soil properties and weather interac-
tions to develop effective mitigation strategies. Our
results show that variation in predicted NO3 is largely
accounted for by hydrological factors, fertilizer N
rate, and N removal, with several of these variables
not previously considered in other synthesis studies.
The magnitude of change in NO3 leaching predic-
tions for hydrological factors (up to 24 kg N ha−1)
relative to other management variables highlights the
importance of intra- and inter-annual changes of pre-
cipitation regimes and brings further attention to cur-
rent and future climate trends, particularly in areas
susceptible to extreme weather variations. Under low
and high N leaching scenarios, greater grain yields
due to higher N rates translated into more predicted
N leaching losses, whereas N removal due to higher
yields showed a synergetic effect reducing losses. To
minimize tradeoffs, our analysis emphasizes the need
to increase crop yields while optimizing NUE and
limiting the use of additional N fertilizer. Whilst
implementation of known best N fertilizer manage-
ment continues to be paramount, results from this
study suggest the need for future policy discussions
to develop economic incentives targeting practices
that improve NUE in high-risk weather scenarios as
the most effective opportunity for N leaching mitiga-
tion, while also supportingmore advanced prediction
analytics to enable proactive and adaptative measures
from governments and the agricultural community
in areas susceptible to extreme weather variation.
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