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A B S T R A C T

Rice is a main staple food for roughly half of the world’s population, but rice agriculture is also a main source of
anthropogenic greenhouse gas (GHG) emissions. Many studies have reported that water management (e.g. al-
ternate wetting and drying, intermittent irrigation, mid-season drain, aerobic rice) affects rice yields and me-
thane (CH4) and nitrous oxide (N2O) emissions from rice paddies. However, these studies span a variety of
practices and vary in experimental design and results, making it difficult to determine their global response from
individual experiments. Here we conducted a meta-analysis using 201 paired observations from 52 studies to
assess the effects of water management practices on GHG emissions and rice yield. Overall, compared to con-
tinuous flooding, non-continuous flooding practices reduced CH4 emissions by 53%, increased N2O emissions by
105%, and decreased yield by 3.6%. Importantly, N2O emissions were low, contributing, on average, 12% to the
combined global warming potential (GWP; CH4 + N2O). As a result, non-continuous flooding reduced GWP
(-44%) and yield-scaled GWP (-42%). However, non-continuous flooding practices stimulated N2O emissions to a
greater degree in soils with high organic carbon or with manure additions. The reduction in CH4 emissions
increased with the number of drying events, soil drying severity, and the number of unflooded days. Currently,
Intergovernmental Panel on Climate Change (IPCC) scaling factors for single and multiple (≥ 2) drying events
are 0.6 and 0.52. Based on this analysis using actual side-by- side field studies, we suggest changing these to 0.67
for a single event and 0.36 for multiple events.

1. Introduction

Methane (CH4) and nitrous oxide (N2O) are the second and third
most important greenhouse gases (GHGs), accounting for approxi-
mately 20% and 6% of the enhanced global warming effect, respec-
tively (IPCC, 2007). Rice paddies are a major source of anthropogenic
GHG emissions and are responsible for approximately 11% of global
anthropogenic CH4 emissions (IPCC, 2013) and 11% of cropland N2O
emissions (US-EPA, 2006). Among the major crops, rice has the highest
GHG intensity (Linquist et al., 2012a; Carlson et al., 2017). Meanwhile,
rice is an important staple food, feeding about 50% of the global po-
pulation, and rice demand is expected to increase by 28% in 2050
(Alexandratos and Bruinsma, 2012). As such, much recent research has

focused on management practices that reduce GHG emissions from rice
paddies without negative effects on rice yields (e.g. Linquist et al.,
2012a; Jiang et al., 2017, 2018).

Methane is an end product of organic matter decomposition under
anaerobic soil conditions (Conrad, 2007), and N2O is mainly produced
through nitrification (aerobic) and denitrification (anaerobic) processes
(Bouwman, 1998). Water management practices can alter soil oxygen
availability, thereby affecting various processes underlying CH4 and
N2O production (Bouwman, 1998; Conrad, 2007). Since the 1990s,
considerable research has focused on various non-continuous flooding
strategies whereby one or more soil aerobic (drying) periods are in-
troduced during the growing season in an effort to reduce CH4 emis-
sions. Such practices have been referred to using terms such as alternate
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wetting and drying (AWD), intermittent irrigation and mid-season
drain. In addition, there are practices in which the field is never in-
tentionally flooded during the growing season. Compared to continuous
flooding, non-continuous flooding reduces CH4 emissions but may in-
crease N2O emissions (Linquist et al., 2012a; Feng et al., 2013; Kritee
et al., 2018). However, the response of GHG emissions differs strongly
between management practices and varies with environmental factors
(Zou et al., 2009; Qin et al., 2010; Feng et al., 2013; Xu et al., 2016;
Jiang et al., 2019a). Two studies have assessed the effects of water
management on GHG emissions by statistically analyzing datasets of
field measurements (Yan et al., 2005, 2009; Wang et al., 2018). How-
ever, these analyses were not based on direct side-by-side comparisons,
raising the possibility that estimates of water management effects were
affected by between-site variation in environmental factors. Moreover,
non-continuous flooding can negatively or positively impact rice yield,
depending on the practices being used (Feng et al., 2013; Carrijo et al.,
2017). Thus, to identify management practices that optimize rice yields
while minimizing GHG emissions, a quantitative synthesis is needed
that simultaneously assesses both in response to water management.

We conducted a global meta-analysis to assess the effects of water
management on GHG emissions and grain yield. The objectives of this
study were: to quantify the effects of water management on CH4

emissions, N2O emissions, GWP, yield, and yield-scaled GWP, and to
identify key factors predicting the effects of water management on GHG
emissions.

2. Materials and methods

We extracted results for CH4 and N2O emissions from water man-
agement experiments conducted in paddy fields. For studies reporting
GHG emissions, we also extracted rice yield data. We used Web of
Science database to search the journal articles published before October
2017, using search terms “CH4 OR N2O” and “midseason* OR inter-
mittent irrigation* OR alternate wetting and drying* OR water saving*
OR non continuous flooding* OR water management*” for article topic.
To be included in our dataset, studies needed to include a “continuous
flooding” treatment as a control. In total, we found 52 studies reporting
on 201 paired observations (Table 1, Dataset 1). Our dataset included
43 studies that were conducted in Asia, 6 studies from America, and 3
studies from Europe (Fig. 1).

For both the control (i.e. continuous flooding) and the non-con-
tinuous flooding treatment, we tabulated seasonal CH4 emissions, N2O
emissions, and rice yield. We also calculated the global warming po-
tential (GWP) of the combined N2O and CH4 emissions, expressed in
CO2 equivalents (that is, 298 × N2O + 25 × CH4; IPCC, 2007), and
yield-scaled GWP. We quantified the effects of water management by
calculating the natural logarithm of the response ratio (R), a metric
commonly used in meta-analyses (Hedges et al., 1999; Osenberg et al.,
1999):

lnR = ln(xt / xc)

where x is the value for CH4 emissions, N2O emissions, GWP, rice yield,
and yield-scaled GWP under non- continuous flooding (t) or continuous
flooding (c) treatments. We performed a mixed- effects meta-analysis in
R, using the rma.mv function in the “metafor” package (Viechtbauer,
2010), including "paper" as a random effect because several papers
contributed more than one effect size. We weighted lnR by the inverse
of the study variance, and estimated missing variances using the
average coefficient of variance across the dataset (van Groenigen et al.,
2017). We excluded 3 observations of CH4 emissions (out of a total of
195) and 6 observations of N2O emissions (out of a total of 146), be-
cause the R value was negative (Dataset 1). We also excluded 3 ob-
servations where there was a net seasonal uptake of N2O.

Terms for non-continuous flooding practices such as AWD, inter-
mittent irrigation and mid-season drain are used broadly; however, the

specific water management employed varies depending on region and
country and is not universally agreed upon. That said, these practices
can be quantitatively described in terms of number of drying events, the
number of unflooded days, soil drying severity, and timing. Thus, we
categorized studies in our dataset based on the numbers of drying
events (that is, 1, 2, 3 and>3), total days of unflooded soil (≤10,
10–20, 20–30,> 30 days), and soil drying severity. Non-flooded
treatments were analyzed separately. These treatments were either
rain-fed or irrigated with the intention of maintaining the field in a non-
flooded state for all or most of the growing season, resulting in aerobic
conditions. Thus, studies in these systems were not included in any of
the analyses on non-continuous flooding, and they were not included in
categories based on the number of drying events or unflooded days.

Following the definition used by the Intergovernmental Panel on
Climate Change (IPCC), each soil drying event should be at least 3 days
long (IPCC, 2006). Soil drying severity was defined as “mild” if the soil
water potential was ≥ −20 kPa or field water level did not drop below
15 cm from the soil surface; and “severe” when soil water potential
was<−20 kPa (Carrijo et al., 2017; Lampayan et al., 2015).

For studies including a single draining event, we also checked
whether the timing of the event affected treatment effects. We com-
pared the effects of soil drying during the vegetative stage (i.e. before
panicle initiation) vs. reproductive stage (i.e. after panicle initiation).
When the onset of the reproductive stage was not reported, we assumed
that panicle initiation occurred halfway through the growing season for
direct seeded rice. For transplanted rice, we assumed panicle initiation
occurred at 1/3 of the time between transplanting and harvest.

Various soil properties and management factors are known to affect
GHG emissions from rice paddies and wetlands (Yan et al., 2005;
Conrad, 2007). Thus, each study was categorized based on soil organic
carbon (SOC) (i.e. low (< 12 g kg−1), mid (12-16 g kg−1), and high
(> 16 g kg−1)), soil texture (heavy vs. light), pH (< 6 vs.≥ 6), in-
organic N input (< 120 kg ha−1 vs.≥ 120 kg ha−1), straw retention
(yes vs. no) and manure addition (yes vs. no). “Heavy” soils included all
soils within the texture classes “clay”, “sandy clay”, “silty clay”, “sandy
clay loam”, “clay loam” and “silty clay loam” according to the USDA
Soil Taxonomy (Soil Survey Staff, 2014). If texture class was not pro-
vided, soils with a clay percentage higher than 25% were included in
this category as well. “Light” soils included all other soils (i.e. “sand”,
“loamy sand”, “sandy loam”, “loam”, “silt loam” and “silt”, or clay
percentage lower than 25% if texture class was not given).

To ease interpretation, the results of lnR were back-transformed and
reported as the percentage change ((R − 1) × 100). If the 95% CI of
experimental classes did not overlap with zero, we considered the effect
size to be significant. We used a Wald-type test incorporated in the
“metafor” package to determine whether treatment effects were sta-
tistically different between experimental classes (Viechtbauer, 2010).

We used the “glmulti” package in R to determine the relative im-
portance of the aspects of the non-continuous flooding practices in
determining treatment effects, analyzing our data with all possible
models that could be constructed using combinations of the experi-
mental factors (Terrer et al., 2016; Jiang et al., 2019b). The relative
importance of the experimental factors was calculated as the sum of
Akaike weights derived for all the models in which the factor occurred.
Overall average CH4 and N2O emissions across the dataset were esti-
mated as the simple average, and 95% CI were determined by boot-
strapping.

3. Results

Averaged across all observations, non-continuous flooding practices
significantly reduced CH4 emissions by 53% and increased N2O emis-
sions by 105% (Fig. 2a) compared to continuous flooding. In addition,
non-continuous flooding practices significantly reduced rice yield,
GWP, and yield-scaled GWP by 3.6%, 44%, and 42%, respectively. N2O
emissions made up a small part of total GHG emissions from rice
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paddies, accounting for 7.6% under continuous flooding and 17.4%
under non-continuous flooding (Fig. 2b).

The reduction in CH4 emissions caused by non-continuous flooding
increased with the number of drying events, the number of unflooded
days, and with soil drying severity (Table 2). However, these factors did
not affect treatment effects on N2O emissions (Table S1). Severe non-
continuous flooding practices significantly reduced the rice yield, but
mild non-continuous flooding did not (Table 2). The number of drying
events and the number of unflooded days did not affect treatment ef-
fects on rice yield. The effect of non-continuous flooding on GWP and
yield-scaled GWP increased with the number of drying events and the
number of unflooded days (Table 3). For studies including a single
draining event, the timing of drying events did not significantly affect
treatment effects on CH4 emissions, N2O emissions, rice yield, GWP,

and yield-scaled GWP (Table S1) and thus was not considered in further
analyses. To directly compare our results with IPCC scaling factors, we
also calculated average reductions in CH4 emissions for all studies with
≥ 2 drying events (n=60), excluding the studies on non-flooded
systems. On average these studies reported a 63.4% reduction in CH4

(95% CI: - 70.9% to -53.9%). The number of drying events correlated
with the number of unflooded days (P < 0.0001; Fig.S1).

Non-flooded practices in which the treatments were never in-
tentionally flooded, reduced the CH4 emissions by 88.7%, rice yield by
20.1%, GWP by 71.7%, and yield-scaled GWP by 64.3% compared to
continuous flooding (Tables 2 and 3). Non-flooded practices did not
significantly affect N2O emissions, with large variation in treatment
effects between studies. Soil N2O emissions accounted for 61% of total
GHG emissions under non-flooded conditions on average (Dataset 1).

Table 1
Overview of the water management studies included in the meta-analysis.

Country SOC
(g kg−1)

Soil texture pH Inorganic N input
(kg ha−1)

Manure addition Straw retention CH4 N2O Yield Reference

America
Brazil NA NA NA NA – – ● NA ● Moterle et al. (2013)
Brazil 9.3 light 5.4 176 – – ● ● ● Zschornack et al. (2016)
Uruguay 20 heavy 6.0 66 – – ● ● ● Tarlera et al. (2016)
USA 6.7 light 5.6 144 – – ● ● ● Linquist et al. (2015)
USA NA light NA 165 – – ● NA ● Sass et al. (1992)
USA 5.3 heavy 10.6 180 – – ● ● ● LaHue et al. (2016)
Asia
Bangladesh 23 light 6.2 110 – – ● ● ● Ali et al. (2013)
Bangladesh 9 heavy 6.4 85.5 – – ● NA ● Khan et al. (2015)
Cambodia 2.87 light 4.1 0, 37, 150,187 – /● – ● NA ● Ly et al. (2013)
China 18.3 light NA 0, 75, – – ● ● ● Dong et al. (2018)
China 9.4 heavy 6.7 65 ● – ● ● NA Jiao et al. (2006)
China 30.3 light 7.4 NA ● – ● NA ● Li (2012)
China 24 heavy 6.0 150 – – ● NA ● Liang et al. (2016)
China 24.2 NA 6.2 60 ● – ● NA ● Lu et al. (2000)
China 17 light 4.7 180 – – ● ● ● Ma et al. (2013)
China 13.5,15.3 heavy 6.6 100 – – ● ● ● Qin et al. (2010)
China 12.5,9.9 light 6.8,7.0 26 ● – ● NA ● Wang et al. (1999)
China 9.95 heavy 8.0 150 ● – ● ● ● Wang et al. (2000)
China 14.7 light 5.7 0, 220 – – /● ● ● ● Wang et al. (2012)
China 18.4 heavy NA 150 – – /● ● ● ● Wang et al. (2017)
China 14.2 heavy 7.0 210 – – ● ● ● Xu et al. (2015)
China 14.2 heavy 7.0 210 – – ● ● ● Xu et al. (2016)
China 12.7 heavy NA 278 – – ● ● ● Yang et al. (2012)
China 16.5 light 5.6 126 – – ● NA NA Yang and Chang (1999)
China 28 heavy NA 95.4 – – ● ● NA Yue et al. (2005)
China 17.5 heavy 6.7 277 – – /● ● ● NA Zou et al. (2005)
India 4.6 light 8.1 120 – – ● ● ● Gupta et al. (2016)
India 4.6 light 7.4 120 – – ● NA ● Khosa et al. (2011)
India 4.9 heavy 6.9 100 – – ● ● ● Kumar et al. (2016)
India 4.5 light 8.1 120 – /● – ● ● ● Pathak et al. (2002, 2003)
India 2.4 light 7.2 0 ● – ● NA NA Tyagi et al. (2010)
Indonesia 23.1 light 4.1 100 – ● ● ● NA Hadi et al. (2010)
Indonesia 23.6 heavy 5.2 0, 86 – – NA ● NA Suratno et al. (1998)
Japan 13.5,11.9, 74.5 NA, heavy NA 56,70,90 – – /● ● ● ● Itoh et al. (2011)
Japan 44.1 heavy 6.0 90 – – /● ● NA ● Minamikawa and Sakai (2006)
Japan 37.3 light NA 300 – – ● ● ● Win et al. (2015)
Japan 16 heavy 6.1 60 – ● ● NA NA Yagi et al. (1996)
Korea 16.6 heavy 5.9 110 – – ● ● ● Ahn et al. (2014)
Korea 16.2 light 6.3 110 ● – ● NA NA Choi et al. (2015)
Korea 8.5 light 6.9 90 – – ● ● ● Haque et al. (2016a)
Korea 11.8 light 6.2 90 – – /● ● ● ● Haque et al. (2016b)
Korea 9.9 NA 5.8 0, 160 – – /● ● ● ● Kim et al. (2014)
Korea 5.8 heavy 5.9 110 – – /● ● NA NA Shin et al. (1996)
Philippines 13.2 heavy 6.9 150 ● – ● NA ● Corton et al. (2000)
Thailand 17.4 heavy 4.8 70 – – ● ● ● Chidthaisong et al. (2017)
Thailand 13.3 heavy 6.1 163 – – ● ● ● Towprayoon et al. (2005)
Vietnam 12.6 heavy 5.7 100, 150, 225 – /● – ● ● ● Pandey et al. (2014)
Vietnam 9.1, 13 light 5.1 132, 139 – /● – /● ● ● ● Tariq et al. (2017)
Europe
Italy 12.2 heavy 8.2 120 – ● ● ● ● Lagomarsino et al. (2016)
Italy NA NA NA 0 ● – ● ● ● Mazza et al. (2016)
Spain 15.6, 9.2 light 5.9 140 – – ● ● ● Fangueiro et al. (2017)

NA, not available.
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Soil properties and management factors (i.e. manure addition and
straw management) did not affect the treatment effects on CH4 emis-
sions, GWP, rice yield, and yield-scaled GWP (Table 4). SOC and
manure addition affected the treatment effects on N2O emissions. The
increases in N2O emissions caused by non-continuous flooding in-
creased with SOC content (Fig. 3a), and with manure application
(Fig. 3b). Because our dataset contained only 7 observations from stu-
dies with manure application, we also analyzed the subset of studies in
which the effect of manure addition and water management were stu-
died in a full factorial design. Within in this subset of studies, manure
application increased treatment effects on N2O emissions as well (Fig.
S2).

To determine which aspects of the non-continuous flooding prac-
tices (i.e. number of drying events, soil drying severity, and number of
unflooded days) were most important in determining treatment effects
on CH4 emissions, N2O emissions, GWP and rice yield, we conducted
the model selection procedure for studies reporting information on all
three aspects. Based on the sum of Akaike weights, the effect of non-
continuous flooding on CH4 emissions was best predicted by the total
number of unflooded days, while other predictors were less important
(Fig. 4a). We repeated the model selection procedure for the larger
subset of studies reporting information on number of drying events and
number of unflooded days, but without information on drying severity.
This analysis confirmed that the effect of non-continuous flooding on

CH4 emissions was best predicted by the total number of unflooded
days (Fig. 4b). None of the aspects of the non-continuous flooding
practices explained the variation in treatment effects on N2O emissions,
rice yield, and GWP (Fig. S3).

4. Discussion

Non-continuous flooding significantly reduced CH4 emissions from
rice paddies but increased N2O emissions, corroborating numerous
previous studies (e.g. Zou et al., 2005; Feng et al., 2013; Linquist et al.,
2015). Non-continuous flooding management can increase O2 avail-
ability and soil Eh which inhibits methanogenic activity (Ratering and
Conrad, 1998; Yuan et al., 2009; Ma and Lu, 2010). Moreover, high O2

availability during the unflooded stage can also reduce CH4 emissions
by stimulating CH4 oxidation (Ma and Lu, 2010).

Methane is only produced under anaerobic conditions (Conrad,
2007), implying that the effect of non- continuous flooding practices on
CH4 emissions largely depends on their effect on soil O2 availability
throughout the growing season. In this context, it is not surprising that
the number of unflooded days had the greatest effect on CH4 emissions
(Fig. 4). Importantly, while the number of unflooded days had the
greatest effect, increasing the number of drying events also tended to
increase the number of unflooded days (Fig. S1). However, since the
number of unflooded days predicted treatment effects better than the

Fig. 1. Locations of studies included in our meta-analysis.

Fig. 2. Effect of non- continuous flooding practices (does not include non-flooded observations) on CH4 and N2O emissions, GWP, yield, and yield-scaled GWP (a) and
the seasonal emissions of CH4 and N2O under continuous flooding and non-continuous flooding (b, n=116). Numbers between brackets indicate the number of
observations. Error bars indicate 95% confidence intervals.
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number of drying events (Fig. 4), models may improve the accuracy of
CH4 emission estimates by considering the total number of unflooded
days as a model parameter rather than the number of drying events.

While the number of unflooded days had a stronger influence on
CH4 emissions reduction than severity, the severity of drying impacted
yields. Severe drying reduced yields but mild drying did not (Table 2).
This is similar to findings of Carrijo et al. (2017) and has led to practices
such as Safe-AWD (Lampayan et al., 2015) where the soils may undergo
a number of drying events during the growing season, but the fields are
reflooded when the water table reaches 15 cm below the soil level.
These types of practices provide the benefits of allowing drying periods
such as reduced CH4 emissions, without sacrificing yield.

Surprisingly, the timing of drying events during the season did not
affect seasonal CH4 emissions. In rice systems, early CH4 emissions are
often attributed to the decomposition of the previous crop residues
while emissions in the latter half of the season are attributed to root-
derived carbon (Chidthaisong and Watanabe, 1997). Some recent stu-
dies (e.g. Tariq et al., 2017; Faiz-ul Islama et al., 2018) suggest that
drying earlier reduced CH4 emissions more strongly than drying mid-
season because early drying events reduced high CH4 emissions early in
the season when there was a high amount of residue from the preceding
crop. However, CH4 emissions depend on other factors besides substrate
availability (e.g. temperature, rice cultivar), and the timing of peak CH4

emissions differs strongly between studies. For instance, Ahn et al.
(2014) and Linquist et al. (2015) found that max CH4 emissions in
continuously flooded systems were not at the beginning of the growing
season. Thus, we speculate that no general relationship between soil
drying timing and CH4 emissions emerged in our meta-analysis because
the optimal timing of drying events to reduce seasonal CH4 emissions

differs between experiments.
The IPCC Tier 1 methodology assumes a 40% reduction for a single

drying event and a 48% reduction for multiple (i.e.≥ 2) drying events
(Yan et al., 2005; IPCC, 2006). In contrast, our results suggest that a
single drying event reduces CH4 emissions by 33%, but these reductions
increase to about 73% for ≥ 3 drying events. Similar results were re-
ported by Linquist et al. (2018) for studies conducted in the US. In other
words, our results and those of Linquist et al. (2018) suggest that the
IPCC approach slightly overestimates the impact of a single drying
event and underestimates the impact of multiple drying events. Com-
paring average treatment effects in studies with ≥ 2 drying events (i.e.,
64% reduction in CH4) with IPCC estimates suggests that the latter
approach underestimates reductions in CH4 emissions with multiple
drying events by approximately 33%. This disconnect may reflect that
IPCC estimates are not based on direct side-by-side comparisons but
rather a statistical modeling approach due to the limited available data
at the time (Yan et al., 2005). Currently the IPCC scaling factors for
single and multiple (≥ 2) drying events is 0.6 and 0.52. Based on this
study, we suggest changing these to 0.67 for a single event down and
0.36 for multiple events.

Generally, N2O emission are low in anoxic, continuously flooded
rice soils as most of the N2O that is produced is further reduced and
emitted as N2 (Firestone and Davidson, 1989; Hou et al., 2000). Non-
continuous flooding results in favorable conditions for nitrification and
subsequent denitrification upon flooding (Buresh et al., 2008; Zhu
et al., 2013), both of which can result in the release of N2O gas
(Klemedtsson et al., 1988; Dobbie et al., 1999). N2O emissions typically
make up a small part of total GHG emissions from rice paddies even
when dry events are imposed during the season (Linquist et al., 2012a),

Table 2
The effect of non-continuous flooding on CH4 emissions and rice yield as compared to continuously flooded treatments, as affected by number of drying events, soil
drying severity, total number of unflooded days, and non-flooded treatments. P values indicate the results of a Wald-type test for differences between experimental
categories.

CH4 emissions Rice yield

Factor Class Mean 95% CI n P Mean 95% CI n P

Number of drying events 1 −32.9 −49.0 −11.8 43 < 0.0001 −0.5 −4.9 4.1 39 0.95
2 −46.5 −61.7 −25.4 22 −2.2 −7.8 3.7 18
3 −73.6 −81.5 −62.3 16 −1.2 −6.9 4.8 16
> 3 −75.2 −82.2 −65.4 22 −1.0 −6.3 4.5 21

Soil drying severity Mild −56.0 −71.1 −33.0 19 0.03 −1.8 −11.9 9.4 19 0.02
Severe −74.5 −83.7 −59.9 23 −15.9 −25.2 −5.5 23

Unflooded days ≤10 −34.6 −51.1 −12.5 29 < 0.0001 −1.4 −7.6 5.3 23 0.84
10-20 −45.6 −59.2 −27.5 25 −2.8 −8.7 3.5 22
20-30 −61.5 −70.2 −50.2 35 −3.6 −8.7 1.8 34
> 30 −75.1 −81.3 −66.7 23 −3.9 −9.3 1.9 23

Non-flooded −88.7 −97.2 −53.5 12 −20.1 −37.4 2.1 15

Table 3
The effect of non-continuous flooding on GWP and yield-scaled GWP as compared to continuously flooded treatments, as affected by number of drying events, soil
drying severity, total number of unflooded days, and non-flooded treatments. P values indicate the results of a Wald-type test for differences between experimental
categories.

GWP Yield-scaled GWP

Factor Class Mean 95% CI n P Mean 95% CI n P

Number of drying events 1 −16.5 −39.5 15.2 38 <0.0001 −14.8 −42.1 25.5 36 <0.0001
2 −32.7 −52.9 −3.9 19 −30.5 −54.4 5.7 18
3 −71.7 −81.2 −57.2 12 −73.1 −83.1 −57.1 12
> 3 −72.3 −81.4 −58.8 14 −74.5 −83.9 −59.5 13

Soil drying severity Mild −26.2 −64.5 53.3 10 0.13 −27.2 −68.4 68.0 10 0.49
Severe −58.2 −80.1 −12.4 19 −44.5 −76.3 29.7 19

Unflooded days ≤10 −12.1 −34.8 18.5 22 <0.0001 −5.2 −32.8 33.7 20 <0.0001
10-20 −19.3 −38.7 6.4 22 −13.0 −36.6 19.3 21
20-30 −57.4 −66.7 −45.5 31 −56.4 −67.0 −42.4 30
> 30 −59.1 −69.4 −45.2 17 −56.2 −68.1 −39.8 17

Non-flooded −71.7 −79.5 −60.9 15 −64.3 −72.2 −54.2 14
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explaining why treatment effects on CH4 emissions and total GWP in
our analysis are largely similar. However, there are exceptions to this
including Lagomarsino et al. (2016) which is included in this study and
recently Kritee et al. (2018) which was not included due to the lack of a
continuously flooded control treatment. In both these studies, ex-
tremely high N2O emissions as a result of non-continuous flooding
outweighed the benefit of reduced CH4 emissions. Wassman et al.
(2019) caution that results from such studies should not be generalized,
because N inputs and irrigation were not co- managed; therefore, fields
were drying when there was a high amount of mineral N in the soil
leading to potential for both nitrification and denitrification (upon
flooding). Co- managing N input and irrigation may prevent such high
N2O emissions. For example, LaHue et al. (2016) reported that N2O
emissions were maintained at close to zero when soil drying periods
occurred when there is a low amount of mineral N in the soil.

Non-continuous flooding stimulated N2O emissions more strongly in
soils with high soil organic C contents (Fig. 3a) and with manure ap-
plication (Fig. 3b). These results likely reflect that mineralization of soil
organic matter and manure provides NH4

+ for nitrification and C and
NO3

− for denitrification (Zhou et al., 2017). Co-managing manure and
water is challenging, because mineralization of manure takes place
potentially over the full course of the growing season (Wild et al., 2011)
and longer (Wen et al., 2003). If the goal is to reduce GWP, the use of
manures along with non-continuous flooding practices needs to be
carefully planned, as shifting to non-continuous flooding practices
while using manure strongly increases N2O emissions, thereby partly
offsetting the decrease in CH4 emissions. It should be noted that our
dataset contained only seven observations from experiments with
manure additions, including both farmyard manure and organic ferti-
lizers. Given the limited number of observations, and because manure
type (i.e. green manure and farmyard manure) affects N2O emissions
(Linquist et al., 2012b), our results on the interaction between manure
addition and water management should be treated with caution.

Irrigation practices in which the fields were maintained in a non-
flooded state for most of the season, resulted in reduced CH4 emissions

(89%) as would be expected as the soils were likely aerobic for a large
portion of the growing season. Furthermore, despite N2O emissions
making up a great proportion of GWP in non-flooded systems as op-
posed to non-continuously flooded systems, GWP was reduced
(Table 3). However, rice yields in these systems were reduced by over
20% compared to continuous flooding. In order to achieve sustainable
intensification goals where by yields are maintained or increased while
environmental impacts are reduced (Godfray et al., 2011), non-con-
tinuously flooded practices can provide similar levels of GWP reduction
while yields are generally much less impacted (on average a 3.6% re-
duction in yields).

Importantly, while meta-analyses are useful in identifying major
controlling variables, they have limitations. Our analysis was limited by
data availability; several environmental factors known to affect CH4

emissions were only available for a small amount of studies, preventing
us from including them in our assessment. For instance, heavy rainfall
during drying events will inhibit O2 transport into the soil, thereby
likely increasing CH4 emissions (Hou et al., 2013). Thus, to gain further
mechanistic insight, we suggest that primary studies include data on
soil water content during drying events and the amount of rainfall
during the growing season. Furthermore, individual field studies have
shown that the timing of drying events affects CH4 emissions (i.e. Tariq
et al., 2017; Faiz-ul Islama et al., 2018), and that soils can be dried to
levels considered severe without reducing yields (LaHue et al., 2016;
Carrijo et al., 2017). Broad meta-analyses such as these should not
discredit these studies but rather to lead to greater inquiry and research
as to what conditions lead to those findings.

In conclusion, we found that compared to continuous flooding, non-
continuous flooding significantly reduces CH4 emissions, GWP, and
yield-scaled GWP, but increased N2O emissions. Our results suggest that
current IPCC methodologies overestimate CH4 emissions in rice systems
with multiple drying event. Based on our results, the IPCC methodology
for estimating CH4 emissions from rice agriculture could be improved
by introducing scaling factors related to the number of unflooded days
or changing the existing scaling factors related to the number of drying
events.
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Table 4
The effect of non-continuous flooding (not including non-flooded observations)
on CH4, N2O, yield, GWP, and yield-scaled GWP, as affected by soil properties
and management factors. P values indicate the outcome of a Wald-type test for
differences between study categories based on soil properties and management
factors (see Methods).

Soil properties Management factors

SOC pH Soil texture Inorganic
N input

Manure
addition

Straw
retention

CH4 0.94 0.23 0.31 0.38 0.74 0.36
N2O <0.01 0.25 0.46 0.98 <0.01 0.13
GWP 0.51 0.08 0.34 0.79 0.95 0.57
Yield 0.43 0.53 0.66 0.74 0.74 0.45
Yield-scaled

GWP
0.77 0.06 0.35 0.63 0.93 0.59

Fig. 3. The effect of non-continuous flooding (not including non-flooded observations) on N2O emissions, as affected by SOC contents (a) and manure additions (b).
Numbers between brackets indicate the number of observations. Error bars indicate 95% confidence intervals.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.fcr.2019.02.010.
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