
Agronomy Journa l  •  Volume 111,  I s sue 6 •  2019 2889

AbstrAct
Fine tuning N recommendations requires an understanding of 
crop N status and yield potential early enough in the growing 
season when changes to N management can influence yields. 
Recent studies have demonstrated the ability of Normalized Dif-
ference Vegetation Index (NDVI) to assess crop N status and 
predict yield in wheat (Tricticum aestivum L.) and maize (Zea 
mays L.); however, there has been relatively little such research on 
rice (Oryza sativa L.). The objectives of this study were to deter-
mine how well NDVI measured at the panicle initiation (PI) rice 
growth stage assesses crop N status and predicts final grain yield. 
Nitrogen response trials were established over a 4-yr period (10 
site-years) at various locations throughout the Sacramento Valley 
rice growing region of California. Additionally, the relationship 
between NDVI and crop N status was characterized across 28 on-
farm plots representing a range of environmental conditions and 
management practices. The NDVI at PI was best correlated with 
total N uptake (NUP, r2 = 0.66), followed by N concentration 
(NCONC, r2 = 0.54), and aboveground biomass (AGB, r2 = 0.51). 
The utility of NDVI was greatest at lower values of crop N status, 
whereas at higher values, NDVI saturated. The NDVI at PI was 
positively correlated with final grain yield (r2 = 0.58) indicating 
utility for developing in-season yield predictions. While NDVI 
is a potentially useful tool to improve N fertilizer management 
and develop in-season yield predictions in rice, alternative indices 
that do not saturate would likely provide a basis for a better tool.

core Ideas
•	 The ability of NDVI to assess rice N status and predict final grain 

yield was evaluated across 38 sites and four years.
•	 NDVI at panicle initiation was most closely related to crop N 

uptake.
•	 At high values of crop N status NDVI had limited utility due to 

saturation.
•	 NDVI at panicle initiation was positively correlated (r2 = 0.58) with 

final grain yield.
•	 NDVI of 0.66 at panicle initiation indicated sufficient crop N 

uptake to achieve average maximum grain yield.

Despite being the most studied nutrient worldwide, 
nitrogen (N) use efficiency in global rice (Oryza sativa 
L.) production is only about 30% (Ladha et al., 2005). 

In 2017, approximately 16 million Mg of N fertilizer was used 
for rice production worldwide (IFA, 2017), implying 11.2 mil-
lion Mg of N was potentially lost to the environment. Nitrogen 
fertilizer losses from agricultural systems can have many adverse 
environmental and human health consequences. For example, 
nitrate leaching due to excessive N fertilization and improper 
water management can contaminate drinking water and lead to 
methemoglobinemia in infants (Di and Cameron, 2002; Harter 
et al., 2012). Significant amounts of greenhouse gases, such as 
nitrous oxide and methane, can be released from agricultural 
systems when N availability in the soil exceeds plant N require-
ments (Smith et al., 2007; Almaraz et al., 2018). Elevated N 
inputs to aquatic ecosystems from agricultural tailwater can 
result in hypoxic dead zones due to eutrophication and the 
proliferation of harmful algal blooms (Conley et al., 2009). 
Therefore, improved methods need to be designed and adopted 
that allow farmers to accurately assess crop N needs and make 
informed management decisions.

In California, the average seasonal N fertilizer requirement 
for rice is approximately 165 kg N ha–1 (UC-ANR, 2018), 
which is most efficiently utilized when injected into the soil 
as aqua-ammonia before planting (Linquist et al., 2009). In 
recent years, an increasing number of California rice farmers 
have started applying additional N fertilizer as top-dress around 
panicle initiation (PI) growth stage. For the short duration 
varieties commonly grown in California, PI typically occurs 
around 45 to 50 d after sowing and is considered a critical stage 
for N management as all pre-plant N fertilizer has been taken 
up (LaHue et al., 2016), and N applied at growth stages later 
than PI is less efficiently utilized for grain yield (DeDatta, 
1981; Linquist and Sengxua, 2003). The current recommenda-
tion at PI is for farmers to first assess crop N status and apply 
top-dress N only if the crop is deemed N deficient (Linquist et 
al., 2009). However, assessing crop N status in an accurate and 
timely manner remains a challenge in these systems, thus most 
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top-dress N applications take place without evaluating crop N 
status; possibly resulting in inefficiencies due to over application.

Some methods are available to assess midseason plant N sta-
tus but have not been widely adopted by California rice farmers 
due to their limitations. Plant tissue analysis provides the most 
direct measure; however, this technique is also time consuming 
and lab results are often received past the time when fertilizer 
decisions need to be made (Daughtry et al., 2000). Alternative 
technologies are available to expedite in-field N status assess-
ment, such as the Leaf Color Chart (LCC) and the Soil Plant 
Analysis Development (SPAD) chlorophyll meter (Peng et al., 
1996; Balasubramanian et al., 1999). The LCC estimates N 
content based on leaf greenness, while the SPAD chlorophyll 
meter measures the difference in transmittance between red and 
near infrared light passing through the leaf to estimate chloro-
phyll content (Alam et al., 2005; Uddling et al., 2007). Previous 
research has demonstrated the ability of these technologies to 
assess rice N status and promote sustainable N management 
(e.g., Yang et al., 2003; Islam et al., 2007; Singh et al., 2007). 
However, both the LCC and SPAD chlorophyll meter are inef-
ficient as they only assess a single leaf at a time, thus requiring 
considerable time and effort to accurately assess a whole field 
(Daughtry et al., 2000; Saberioon et al., 2014; Xue et al., 2004).

More recently, remote sensing technology has been devel-
oped which utilizes canopy reflectance measurements to assess 
crop N status in a quick and nondestructive manner. Canopy 
reflectance data is collected remotely (via satellite, aircraft, or 

proximal sensor), and interpreted through a vegetative index. 
The Normalized Difference Vegetation Index (NDVI) is the 
most widely adopted (McFarland and van Riper, 2013) and is 
sensitive to photosynthetic compounds, making it a potentially 
useful index to measure the productivity of vegetation in a 
defined area (Tucker, 1979; Tucker et al., 1985).

The ability of NDVI to assess crop N status and develop in-
season yield predictions has been studied extensively in wheat 
(Tricticum aestivum) and maize (Zea mays) production systems. 
Many have shown NDVI to effectively quantify plant N status 
across a variety of growth stages and sensor types (Reyniers and 
Vrindts, 2006; Li et al., 2008; Erdle et al., 2011; Li et al., 2014). 
Others found NDVI to be useful for developing in-season 
yield predictions by estimating biomass growth in wheat and 
maize (Raun et al., 2001; Teal et al., 2006; Inman et al., 2007). 
Adopting NDVI based N management in wheat and maize 
production systems has led to improved grain yield, N use effi-
ciency, and net returns (Raun et al., 2002; Mullen et al., 2003; 
Raun et al., 2005; Tubaña et al., 2008). Comparatively, there 
have been relatively few such studies in rice. Some have tested 
the ability of NDVI to assess rice N status (Zhu et al., 2007; 
Gnyp et al., 2014; Yao et al., 2014; Lu et al., 2017) and few have 
used NDVI to develop in-season yield predictions (Harrell et 
al., 2011; Yao et al., 2012; Cao et al., 2016). However, most of 
these studies have focused their research on single sites, leaving 
at question the scalability of their findings to other sites repre-
senting different soils and management practices. Therefore, the 

Fig. 1. Map of N response trial sites and Farm Survey-15 locations established during the 2015 to 2018 growing seasons throughout the 
Sacramento Valley rice growing area of California, USA.
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objectives of this study were to determine how well NDVI at PI 
assesses rice N status and predicts final grain yield across a range 
of sites and years. Such research will provide the basis for using 
NDVI as an N management tool in rice.

MAterIALs And Methods
nitrogen response trials

site description

Eight on-farm and two on-station N response trials were 
established during the 2015 to 2018 rice growing seasons at 
various locations (referred to by proximity to nearest town or 
station and study year) throughout the Sacramento Valley rice 
growing region of California (Fig. 1; Table 1). On-station sites 
were established at the California Rice Experiment Station 
(RES) near Biggs. The Sacramento Valley has a Mediterranean 
climate characterized by warm and dry conditions during the 
growing season (May to October). The average air temperature 
and precipitation during the growing season for the 4 yr of this 
study were 23.4°C and 7.04 mm, respectively, based on weather 
data collected from a centrally located California Irrigation 
Management Information Systems (CIMIS) weather station 
near Biggs (CIMIS, 2018). In California, most farmers use 
direct water-seeding to establish the rice crop. In this case, the 
fields are fertilized following seedbed preparation, flooded, and 
then soaked seed is broadcast onto the field using an airplane.

Soil samples were collected from the plow layer (approximately 
0–15 cm) after tillage, but prior to fertilizer application. Soil 
taxonomic classification and selected chemical and physical 
properties for each site-year are provided in Table 1. Most study 
sites consisted of soils with high clay contents (40–57%), typical 
of rice soils in California. The only exceptions were soils at Biggs 
(20% clay) and Marysville (22% clay). Soil pH was measured 
using saturated paste (United States Salinity Laboratory Staff, 
1954) and ranged from 4.6 to 7.0. Soil organic C and N were 
measured using an elemental analyzer interfaced to a continuous 
flow isotope ratio mass spectrometer (EA-IRMS) and ranged 
from 1.19 to 2.25%, and from 0.12 to 0.20%, respectively.

experimental design
Nitrogen response trials were arranged in a randomized com-

plete block design with four replicates. In 2015 and 2016, plots 
measured 5 m by 6 m and in 2017 the plots measured 5 × 7.5 m. A 

wide range of crop N status (i.e., biomass and N concentrations) 
was achieved by broadcasting pre-plant N fertilizer by hand at 
rates of 0, 75, 125, 175, and 225 kg N ha–1 as urea (0.46 g N g–1). 
In 2017, additional pre-plant rates of 45 and 275 kg N ha–1 were 
included. In 2018, pre-plant N fertilizer was injected into the soil 
subsurface at approximately 7 to 10 cm depth as aqua-ammonia 
at rates of 0, 101, 135, 168, 202, and 235 kg N ha–1. Plot width 
was determined by the swath width of the harrowing implement 
used to apply aqua-ammonia and ranged from 6.5 to 11.5 m. Plot 
length was 9.1 m at all sites and was taken from the central por-
tion of a 21-m tractor pass to ensure uniform fertilizer applica-
tion within the plots. Phosphorus (P) and potassium (K) were 
broadcast across all plots at a rate of 45 kg P2O5 ha–1 as triple 
superphosphate (0.45 g P g–1) and 50 kg K2O ha–1 as sulfate of 
potash (0.52 g K g–1; 0.17 g S g–1) to ensure these nutrients did not 
limit crop growth. Plots did not receive any additional fertilizer 
after pre-plant applications. Once all fertilizer was applied, fields 
were flooded and then aerially planted with pre-germinated seeds 
of medium grain rice variety M-206. Planting dates varied by site-
year but were all within the normal timeframe for the Sacramento 
Valley (early to mid-May). Crop establishment and management 
followed common grower practice and was either managed by the 
grower (on-farm sites) or researchers (on-station sites).

Farm survey

In addition to the N response trials, in 2015 a total of 28 on-
farm plots (Farm Survey-15) were established to evaluate the 
relationship between NDVI and PI N status across a range of rice 
varieties, fertilizer management, soil types, microclimates, and 
crop establishment methods. Seven farms were selected (denoted 
by the nearest town or island) representing the major geographical 
regions of California where rice is grown (Fig. 1; Table 2). Within 
each farm, two to seven plots were established. Soil samples 
(0–15 cm) were collected from each plot and taxonomic clas-
sification and selected chemical and physical characteristics are 
reported in Table 2. All farms were within the Sacramento Valley, 
except Twitchell Island, which has peat and mineral soils, was 
dry-seeded (as opposed to water seeded), and has cooler tempera-
tures due to its proximity to the Sacramento-San Joaquin Delta.

ndVI Measurements

A GreenSeeker handheld crop sensor (Trimble Inc., 
Sunnyvale, CA) was used to measure NDVI. The GreenSeeker is 

Table 1. Soil descriptions and selected properties of each N response trial site-year located throughout the Sacramento Valley, California.

Site-year
Soil

series Taxonomic classification
Texture Organic 

carbon
Total  

nitrogen pHSand Silt Clay
——————— % ———————

Arbuckle-15 Clear Lake Clay Fine, smectitic, thermic Xeric Endoaquerts 10 33 57 2.25 0.19 6.2
RES-15 Esquon-Neerdobe Fine, smectitic, thermic Xeric Epiaquerts 31 25 44 1.49 0.12 5.0
Davis-16 Sycamore Complex Fine-silty, mixed, super  

active, nonacid, thermic Mollic Endoaquepts
13 37 50 2.22 0.20 7.0

RES-16 Esquon-Neerdobe Fine, smectitic, thermic Xeric Epiaquerts 32 24 44 1.75 0.13 5.0
Nicolaus-17 Capay silty clay Fine, smectitic, thermic Typic Haploxererts 19 36 45 1.44 0.13 5.5
Williams-17 Willows silty clay Fine, smectitic, thermic Sodic Endoaquerts 21 39 40 1.79 0.16 5.0
Arbuckle-18 Clear Lake Clay Fine, smectitic, thermic Xeric Endoaquerts 30 21 49 2.12 0.18 6.3
Biggs-18 Eastbiggs Fine, mixed, active, thermic Abruptic Durixeralfs 50 30 20 1.52 0.12 4.9
Marysville-18 San Joaquin Loam Fine, mixed, active, thermic Abruptic Durixeralfs 39 39 22 1.19 0.15 4.6
Nicolaus-18 Capay silty clay Fine, smectitic, thermic Typic Haploxererts 22 36 42 1.75 0.16 4.8
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an active sensor which measures canopy reflectance (ρ) at specific 
wavelengths in the red (670 ± 10 nm) and near infrared (780 ± 
10 nm) regions of the electromagnetic spectrum and calculates 
NDVI as (ρ780 nm − ρ670 nm)/(ρ780 nm + ρ670 nm). Measurements 
were taken at PI, which marks the physiological shift from veg-
etative to reproductive plant growth (Counce et al., 2000). For 
the short duration varieties, which were used in most sites in this 
study, PI occurs approximately 45 to 50 d after sowing and is 
visually determined by a dark green ring just below the initiating 
panicle, occurring 5 to 7 d before panicle differentiation (when 
the panicle becomes visible) (De Datta, 1981). Panicle initiation 
was visually confirmed in the field prior to measuring NDVI 
using the method outlined by Dunn et al. (2014). Measurements 
were taken by holding the GreenSeeker in the nadir position and 
scanning it over the biomass sampling area at a constant height of 
1.0 m above the crop canopy. For each plot, the final NDVI value 
represented the average of three to four NDVI readings. Canopy 
closure was achieved by PI in all plots that received N fertilizer, 
thus the effect of background water or soil on NDVI measure-
ments was considered negligible. For the 0 N plots, some influ-
ence of background water was present and was accounted for by 
taking the average of multiple NDVI readings.

Two GreenSeekers were used to measure NDVI (GreenSeeker 
1 in 2015 and GreenSeeker 2 from 2016 to 2018). Consistent 
differences between the two devices were detected by plotting 
side by side NDVI measurements (n = 105) (Supplemental Fig. 
S1). Differences were normalized by adjusting NDVI values 
based on the resulting fitted linear regression equation.

This variability across GreenSeekers is a concern and needs 
to be addressed when using the device in the field. Often, when 
using NDVI to inform N fertilizer management, a response 
index is developed where the NDVI of an N-non-limiting plot 
and the field test area are measured and the ratio of the two pro-
vides the response index (Mullen et al., 2003). In such cases, the 
variability between GreenSeeker units in terms of direct NDVI 
measurements would be less a concern.

biomass sampling

Immediately following NDVI measurements, all rice plants 
within a 0.5-m2 quadrat were pulled from each plot. After 

removing roots, the aboveground biomass was oven dried at 
60°C to constant weight, after which the samples were ground in 
a Wiley mill and then ball-milled. Plant material from each plot 
was analyzed for total N using EA-IRMS. Two plant samples 
were collected from each of the 28 Farm Survey-15 plots to calcu-
late an average for each plot. One plant sample was collected per 
plot for the N response trial sites. From these samples, we quan-
tified the following parameters of crop N status: aboveground 
biomass (AGB, kg ha–1), N concentration (NCONC, g N kg–1), 
and total N uptake (NUP, kg N ha–1, = AGB x NCONC).

Grain Yield

Grain yield (kg ha–1) was obtained by harvesting mature plants 
from a 1.0 m2 quadrat in each plot (grain yield was not obtained 
for the Farm Survey-15 plots). Grains were removed from panicles, 
cleaned using a seed blower, dried to constant moisture at 60°C, 
and weighed. Final yields are reported at 14% moisture.

statistical Analysis

Construction of plots, development of regression models, and 
the analysis thereof was performed using the statistical program 
R (version 3.5.2; R Core Team, 2019). The package ‘ggplot2’ 
(Wickham, 2009) was used to visualize the data and construct 
plots. For the purpose of analysis, data from the Farm Survey-15 
plots were combined into a single site-year. The relationship 
between NDVI and each N status parameter was described 
using a quadratic linear regression model. The horizontal 
asymptote for each model was determined as the y-value at the 
vertex, which was calculated from the resulting model coef-
ficients. Quadratic models were selected over complex higher 
order models as both model types explained a similar amount 
of variability in the data and the quadratic models allowed for 
direct comparisons of results with previous studies.

The relationship between NUP and grain yield was described 
by a segmented linear regression model from the package ‘seg-
mented’ (Muggeo, 2017). The segmented model identifies break-
points in the data (i.e., significant changes in the slope parameter) 
and describes the data before and after the breakpoint using 
separate linear segments. The relationship between NDVI and 
grain yield was described by a simple linear regression model.

Table 2. Soil description, selected properties, and rice variety grown at each Farm Survey-15 location.

Farm location 
(number of plots)

Rice
variety

Soil
series Taxonomic classification

Texture Organic 
carbon

Total
nitrogen pHSand Silt Clay

—————————— % ——————————
Arbuckle
(2)

M-206 Clear Lake Clay Fine, smectitic, thermic Xeric 
Endoaquerts

12–16 28–30 56–58 2.05–2.32 0.19 6.0–6.5

Biggs
(3)

M-205 Lofgren-Blavo Very-fine, smectitic, thermic 
Xeric Duraquerts

16–29 15–25 46–63 1.54–2.17 0.12–0.17 4.8–5.6

Marysville
(4)

M-401 Kimball loam Fine, mixed, active, thermic 
Mollic Palexeralfs

35–47 29–37 24–29 1.01–1.64 0.10–0.14 4.9–5.1

Maxwell
(3)

M-206 Willows silty clay Fine, smectitic, thermic Sodic 
Endoaquerts

19–31 32–40 37–43 2.52–2.71 0.22–0.23 5.1–5.4

Robbins
(4)

Koshi Clear Lake silt 
loam

Fine, smectitic, thermic Xeric 
Endoaquerts

49–83 8–34 9–18 0.40–0.96 0.04–0.08 4.9–5.5

Sacramento
(5)

M-104, 
FRC-22

Clear Lake Clay/
Yuvas Loam

Fine, smectitic, thermic Xeric 
Endoaquerts/Fine, mixed, 
active, thermic Abruptic 

Durixeralfs

21–33 23–38 36–49 1.64–1.97 0.14–0.17 5.0–5.8

Twitchell Island
(7)

M-206 Rindge mucky silt 
loam

Euic, thermic Typic 
Haplosaprists

15–87 5–39 8–56 2.72–26.14 0.05–1.34 5.1–5.8
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Graphical and numerical summaries were examined to ensure 
the assumptions of linear regression were satisfied for all regres-
sion models. Model goodness of fit was assessed by compar-
ing adjusted coefficient of determination (r2) and root mean 
squared error (RMSE), calculated as:

( )2

1

1 ˆRMSE
n

i ii
y y

n =
= −∑  

resuLts
nitrogen response trials

Considerable variability in crop AGB, NCONC and NUP was 
present at PI both within and across N trial sites. As expected, 
the within-site variability was due to the different N rates with 
crop AGB, NCONC and NUP all increasing with increasing N 
rate (Table 3). Across site-years, mean AGB ranged from 2609 
kg ha–1 (Davis-16) to 6334 kg ha–1 (Arbuckle-15); NCONC 
ranged from 21.4 g N kg–1 (Arbuckle-15, Arbuckle-18) to 29.9 
g N kg–1 (Marysville-18); and NUP ranged from 58.9 kg N ha–1 
(Davis-16) to 147.7 kg N ha–1 (Nicolaus-17).

At any given N trial site, NDVI increased with increasing N 
rate to a point then leveled off (i.e., saturated). Therefore, the 
lowest NDVI values tend to represent the 0 N rate, while the 

highest NDVI value represented the higher N rates. Minimum 
NDVI varied considerably among the site-years, ranging from 0.15 
(Arbuckle-18) to 0.58 (Nicolaus-18) whereas maximum NDVI 
only ranged from 0.72 (Davis-16) to 0.82 (Williams-17) (Table 3).

As expected, the lowest grain yields in the N trials were in 
the 0 N treatments, with grain yield increasing at most sites 
to a maximum and then leveling off or decreasing at higher N 
rates. Minimum site-year grain yield ranged from 2948 kg ha–1 
(Arbuckle-18) to 10,345 kg ha–1 (Nicolaus-17) (Table 4). Despite 
different maximum AGB, NCONC, and NUP at PI across site-
years, maximum yields were relatively similar and ranged from 
12,246 kg ha–1 (Marysville-18) to 14,675 kg ha–1 (RES-16). 
Overall, there was no segregation in crop AGB, NCONC, NUP, 
or grain yield between site-years based on different sources of pre-
plant N fertilizer (i.e., urea and aqua-ammonia).

Farm survey

Crop N status data taken at PI from the Farm Survey-15 
plots varied considerably, as may be expected, given the large 
number of farms within Farm Survey-15 and the variability 
among them. The range of AGB (1260–7260 kg ha–1), NCONC 
(10.9–33.6 g N kg–1), and NUP (13.8–196.4 kg N ha–1) was 
considerably larger across Farm Survey-15 plots relative to N 
trial site-years (Table 3). Variability in crop N status was also 
reflected by the wide range of NDVI (0.18–0.82). Grain yield 
was not obtained for Farm Survey-15.

Panicle Initiation n status and ndVI

An increase in PI N status led to a corresponding increase 
in NDVI, until a threshold was achieved, after which NDVI 
values leveled off (Fig. 2). The NDVI saturated within a narrow 
range (0.76 to 0.78), when AGB, NCONC, and NUP exceeded 
7597 kg ha–1, 29.9 g N kg–1, and 185 kg N ha–1, respectively. 
Overall, the nature of the relationship between each N status 
parameter and NDVI was similar across the N response trials 
and Farm Survey-15. Of the three N status parameters, NUP 
explained the largest amount of variation in NDVI (r2 = 0.66), 
followed by NCONC (r2 = 0.54) and AGB (r2 = 0.51).

Table 3. Descriptive statistics (sample number, minimum, maximum, and mean) of rice N status parameters and Normalized Difference 
Vegetation Index (NDVI) measured at panicle initiation growth stage.

Site-year N
Aboveground biomass N concentration Total N uptake NDVI
Min–Max Mean Min–Max Mean Min–Max Mean Min– Max Mean

———— kg ha–1 ———— ——— g N kg–1 ——— ——— kg N ha–1 ———
Arbuckle-15 20 3400–8540 6334 13.6–30.5 21.4 48.9–255.8 141.4 0.49–0.78 0.71
Farm Survey-15 28 1260–7260 5090 10.9–33.6 21.9 13.8–196.4 114.9 0.18–0.82 0.65
RES-15 20 3520–6540 5084 11.9–37.3 23.8 41.7–230.5 126.5 0.53–0.80 0.73
Davis-16 20 1332–3714 2609 14.6–31.7 21.5 20.3–114.7 58.9 0.56–0.72 0.67
RES-16 20 1466–4960 3428 18.5–38.8 28.6 30.9–192.6 103.2 0.36–0.75 0.64
Nicolaus-17 28 3970–7426 5559 15.5–36.1 25.7 61.7–240.2 147.7 0.49–0.80 0.68
Williams-17 28 2740–7270 5471 12.3–30.6 22.1 33.8–194.3 124.6 0.36–0.82 0.71
Arbuckle-18 24 730–8006 3397 12.1–30.2 21.4 9.7–160.6 76.5 0.15–0.75 0.61
Biggs-18 23 1962–6812 5019 10.4–32.9 21.5 20.4–193.4 113.6 0.36–0.79 0.69
Marysville-18 24 2384–5472 4604 16.1–37.0 29.9 38.3–202.4 142.0 0.45–0.75 0.66
Nicolaus-18 24 3242–7282 6069 13.1–30.7 23.3 46.0–223.5 146.0 0.58–0.77 0.72
All 289 730–8540 4840 10.4–38.8 23.7 9.7–255.8 118.9 0.15–0.82 0.68

Table 4. Descriptive statistics (sample number, minimum, maxi-
mum, and mean) of final grain yield at the N response trial site-
years (yields were not obtained for Farm Survey-15).

Site-year N
Grain yield†

Min–Max Mean
—————— kg ha–1 ——————

Arbuckle-15 20 6,469–14,529 12,072
RES-15 20 5,235–14,140 11,753
Davis-16 20 6,664–13,969 10,599
RES-16 20 6,653–14,675 11,246
Nicolaus-17 28 10,345–13,375 12,005
Williams-17 28 6,096–12,829 10,159
Arbuckle-18 24 2,948–13,648 9,980
Biggs-18 23 6,767–13,069 11,468
Marysville-18 24 8,046–12,246 11,000
Nicolaus-18 24 8,961–14,391 12,793
All 231 2,948–14,675 11,291
† Adjusted to 14% moisture.
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Panicle Initiation total n uptake, 
ndVI, and Final Grain Yield

Based on the segmented model, PI NUP explained a large 
portion of the variation in final grain yield (r2 = 0.63; RMSE = 
1321 kg ha–1) (Fig. 3a). The segmented model estimated a break-
point at 93.9 kg N ha–1 (95% confidence interval: 85.1 to 102.9 
kg N ha–1) (data not shown), indicating that an increase in crop 
PI NUP beyond this value did not result in a significant increase 
in average final grain yield. The slope before the breakpoint 
was 81 kg kg–1 N, and after the breakpoint was not statistically 
different than a zero slope. The breakpoint of 93.9 kg N ha–1 
corresponded to an average maximum grain yield of 12,314 
kg ha–1. Based on the simple linear regression model, NDVI 
at PI was positively correlated with final grain yield (r2 = 0.58; 
RMSE = 1415 kg ha–1) (Fig. 3b).

dIscussIon
ndVI saturation

Quadratic linear regression models were developed to 
describe the relationship between NDVI and crop N status. In 
each case, as crop N status increased, so did NDVI, until a hori-
zontal asymptote was reached and additional increases in crop 
N status led to minimal change in NDVI (Fig. 2). This satura-
tion of two-band indices such as NDVI is a well-known phe-
nomenon (Asrar et al., 1984; Hatfield et al., 1985; Thenkabail 
et al., 2000; Cao et al., 2013; Gu et al., 2013). NDVI saturation 
is a result of the crop reaching 100% canopy cover, but AGB 
and leaf area index continuing to increase (Gitelson, 2003). 
Once the canopy reaches 100% cover, near infrared reflectance 
continues to rise, but red reflectance only exhibits a modest 
decrease, resulting in only slight changes in the ratio (i.e., the 
denominator will have a much greater impact on the ratio than 
the numerator) (Thenkabail et al., 2000). In our study, NDVI 
saturated within a narrow range (0.76 to 0.78), when AGB, 

NCONC, and NUP exceeded 7597 kg ha–1, 29.9 g N kg–1, and 
185 kg N ha–1, respectively (Fig. 2). Our result is similar to 
the findings of Yao et al. (2014) who reported the relationship 
between NDVI and AGB and NUP to saturate at about 0.80 
and 0.78, respectively. Gnyp et al. (2014) reported the relation-
ship between AGB and NDVI to saturate at approximately 
0.90, which is higher than our study and may be because they 
simulated GreenSeeker NDVI from passive hyperspectral data, 
while we have used actual GreenSeeker measurements.

Recent studies suggest indices which incorporate a red-edge 
band (690 to 730 nm) may improve rice N status assessment 
by overcoming the saturation problem (Wang et al., 2012; Cao 
et al., 2013; Dunn et al., 2016). Cao et al. (2013) found several 
red-edge based indices to explain a large portion of rice NUP 
variability when described by linear regression models. Wang et 
al. (2012) developed a red-edge based three band index which 
estimated NCONC with high accuracy while reducing satura-
tion. Dunn et al. (2016) confirmed the strong correlation of 
red-edge bands with rice NUP based on their analysis of fine-
resolution hyperspectral data. Given the saturation of NDVI, 
and strong linear relationships observed between red-edge based 
indices and rice N status, further research is warranted to inves-
tigate the potential improvement of red-edge based indices over 
NDVI to assess rice N status.

Assessing Panicle Initiation n status with ndVI

Of the three N status parameters, NUP explained the largest 
amount of variation in NDVI (r2 = 0.66), followed by NCONC 
(r2 = 0.54) and AGB (r2 = 0.51) (Fig. 2). The relationship 
between NDVI and crop N status was similar across the N trial 
site-years and Farm Survey-15, indicating NDVI assessed crop 
N status consistently across the wide range of environmental 
conditions and management practices included in this study. 
Importantly, within the observations in this study, AGB at 

Fig. 2. Relationship between rice (A) aboveground biomass, (B) N concentration, and (C) total N uptake at panicle initiation rice growth 
stage and Normalized Difference Vegetation Index (NDVI) as described by quadratic linear regression models. The horizontal asymptote 
(asym) represents the NDVI value at which the relationship saturates. Data were collected during the 2015 to 2018 growing season from 
ten N response trial sites and 28 on-farm plots (Farm Survey-15) throughout the Sacramento Valley rice growing region of California.
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NDVI saturation was closer to the maximum observed AGB, 
whereas NDVI saturated earlier for NCONC and NUP (Fig. 2). 
This suggests at PI, NDVI saturation may pose less of a limita-
tion when assessing AGB as it would with NCONC or NUP. 
That said, the relationship between NDVI and AGB is still 
poorer than for NCONC or NUP.

The relationship between NDVI and crop N status observed 
in this study is similar in strength to what others have found in 
wheat and maize (Reyniers and Vrindts, 2006; Li et al., 2008; 
Erdle et al., 2011; Li et al., 2014). To our knowledge, only one 
other study has examined the relationship between NDVI 
and AGB, NCONC, and NUP in rice. In that study, Yao et al. 
(2014) reported the strongest correlation between NDVI and 
AGB (r2 = 0.76), followed by NUP (r2 = 0.70), and NCONC 
(r2 = 0.38). This is in contrast to our study where NDVI pre-
dicted NUP and NCONC better than AGB. We are not sure why 
this difference between studies, but it may be because Yao et 
al. (2014) conducted all their research at a single location, thus 
resulting in less variation of AGB during the course of their 
study. Others have looked at the relationship between NDVI 
and NCONC and have reported both strong (r2 = 0.81) and 
weak (r2 = 0.08) correlations (Zhu et al., 2007; Lu et al., 2017), 
which may be due to differences in rice varieties or the growth 
stage when data was collected. In other studies, Gnyp et al. 
(2014) examined the relationship between NDVI and AGB and 
reported the same correlation (r2 = 0.51) as our study; while Li 
et al. (2018) examined the relationship between leaf NUP and 
NDVI and found a similar correlation (r2 = 0.70) to our study 
with plant NUP.

The strength of our study relative to most of the other studies 
mentioned above is that it considered multiple N status parameters 

over a large range of sites and years. The strong correlation observed 
between NDVI and rice N status in this study suggests that the 
GreenSeeker could be a scalable tool to assess N status. However, 
as previously discussed, NDVI saturation limits its utility to lower 
values of crop N status, suggesting alternative indices that do not 
saturate could potentially improve N status assessment.

Predicting Final Grain  
Yield at PI with nuP and ndVI

The utility of NDVI to develop regional scale rice yield pre-
dictions has received considerable attention (e.g., Huang et al., 
2013; Son et al., 2014; Pagani et al., 2019), while fewer studies 
have focused on the farm scale. The ability to estimate rice yield 
early in the season is of interest to farmers and private compa-
nies for a number of reasons, including refining N fertilizer 
recommendations, planning harvest, forecasting milling and 
storage needs, and defining marketing strategies.

We observed a positive correlation (r2 = 0.63) between PI 
NUP and final grain yield (Fig. 3a). Yields increased strongly 
with increasing NUP until they reached a plateau at a break-
point of 93.9 kg N ha–1 (Fig. 3a). This breakpoint represents the 
average minimum amount of crop PI NUP required to achieve 
average maximum grain yield. Across sites the actual NUP value 
varied as indicated by the 95% confidence interval ranging from 
85.1 to 102.9 kg N ha–1 (data not shown) and final grain yield 
at the breakpoint also varied considerably (Fig. 3a). Part of this 
variability may be explained by differences in soil indigenous 
N supply after PI. For example, achieving the average maxi-
mum grain yield at the breakpoint (12,314 kg ha–1) requires a 
total seasonal NUP of approximately 215 kg N ha–1 (assuming 
N concentrations in rice grain and straw of 1.10 and 0.65%, 

Fig. 3. (A) Relationship between rice total N uptake at panicle initiation (PI) growth stage and final grain yield as described by a segmented 
model. The vertical dashed line at 93.9 kg N ha–1 represents the average minimum amount of crop N uptake required by PI to achieve 
average maximum grain yield. (B) Relationship between Normalized Difference Vegetation Index (NDVI) at PI and final grain yield as 
described by a simple linear regression model. Data were collected during 2015 to 2018 from ten N response trial sites throughout the 
Sacramento Valley rice growing area of California.
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respectively; Dobermann and Fairhurst, 2000), indicating that 
an additional 121 kg N ha–1 is required after PI. Given that 
pre-plant N fertilizer is completely taken up by PI (LaHue et al., 
2016), and additional N fertilizer was not applied, this require-
ment must have been satisfied by soil indigenous N. Previous 
studies have shown that indigenous N supply from rice soils 
can vary significantly across sites and over time and is closely 
linked with soil properties such as organic carbon (Cassman et 
al., 1998; Espe et al., 2015). In theory, the breakpoint of 93.9 
kg N ha–1 NUP and corresponding NDVI could potentially 
serve as a target for farmers when assessing midseason crop N 
requirements. However, accounting for site-specific differences 
in soil N supply may be needed to refine this target and further 
research could explore this. In this study, NUP of 93.9 kg N ha–1 
corresponds to a NDVI value for 0.66 (derived from Fig. 2c), 
and importantly, this NDVI value is below the saturation value.

Given the relationship between PI NUP and final grain yield 
(Fig. 3a) and PI NUP and NDVI (Fig. 2c), the positive cor-
relation between NDVI at PI and final grain yield (r2 = 0.58) 
was expected (Fig. 3b). This is similar to Cao et al. (2016), who 
found a comparable correlation (r2 = 0.63) in their experiments 
at a single location. Others (e.g., Harrell et al., 2011; Yao et al., 
2012) have reported a poorer relationship between NDVI and 
grain yield with r2 values ranging from 0.36 to 0.44.

Importantly, for short duration varieties grown in California, 
PI usually occurs about 45 to 50 d after seeding; thus, only one-
third of the entire growing season. Grain yield can be altered 
in a number of ways after PI due to many abiotic and biotic 
factors. For example, in California and elsewhere, cold night-
time temperatures at meiosis (between PI and heading) causes 
floret sterility and reduced grain yields (Board et al., 1980; Espe 
et al., 2016). High temperatures at flowering can result in yield 
losses in many rice growing areas, including California (Espe 
et al., 2016; Fahad et al., 2018). Additionally, differences in soil 
N supply late in the season can affect yields as discussed above. 
Biotic factors such as insects and diseases can all negatively 
affect yields after PI (Sesma and Osbourne, 2004; Brooks et al., 
2009; Hasanuzzaman et al., 2018). The greater the variability 
in these stresses across sites or years, the poorer the relation-
ship will be between NDVI at PI and final grain yield. Given 
this, one should not expect the relationship between final grain 
yield and any plant measurement taken at PI to be very high. 
However, if those relationships were developed under optimal 
conditions where post PI stresses did not limit grain yield, then 
such measurements may provide a good estimate of yield poten-
tial. Although, the incidence of these stresses was not measured 
directly in this study, the fact that maximum grain yields were 
similar across all site-years suggests that post PI stresses did 
not have a significant impact on yields, thus providing optimal 
conditions to predict final grain yield at PI using NDVI.

concLusIon
The significant correlation between GreenSeeker NDVI and 

crop N status suggests that it may be developed into a useful 
tool to guide midseason N management decisions. However, 
NDVI saturated at high values of crop N status, suggesting fur-
ther research in alternative indices (e.g., red-edge based NDVI) 
is warranted and could potentially improve estimates of midsea-
son N status. Interestingly, in this study we identified an NUP 

value at PI (93.9 kg N ha–1) at which average maximum grain 
yield was achieved. This value could serve as a midseason target 
in similar systems and may identify when further N applica-
tions are needed. The NDVI corresponding to this NUP value is 
0.66 which, importantly, is below the saturation point. Finally, 
as technology advances, future research focusing on large scale 
production systems will likely shift away from handheld proxi-
mal sensors, like the GreenSeeker used in this study, in favor of 
sensors that can be mounted to drones or satellites.
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