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Abstract

Climate change is predicted to shift temperature regimes in most agricultural areas

with temperature changes expected to impact yields of most crops, including rice.

These temperature-driven effects can be classified into point stresses, where a tem-

perature event during a sensitive stage drives a reduction in yield, or seasonal

warming losses, where raised temperature is thought to increase maintenance

energy demands and thereby decrease available resources for yield formation.

Simultaneous estimation of the magnitude of each temperature effect on yield has

not been well documented due to the inherent difficulty in separating their effects.

We simultaneously quantified the magnitude of each effect for a temperate rice

production system using a large data set covering multiple locations with data col-

lected from 1995 to 2015, combined with a unique probability-based modeling

approach. Point stresses, primarily cold stress during the reproductive stages (boot-

ing and flowering), were found to have the largest impact on yield (over 3 Mg/ha

estimated yield losses). Contrary to previous reports, yield losses caused by

increased temperatures, both seasonal and during grain-filling, were found to be

small (approximately 1–2% loss per °C). Occurrences of cool temperature events

during reproductive stages were found to be persistent over the study period, and

within season, the likelihood of a cool temperature event increased when flowering

occurred later in the season. Short and medium grain types, typically recommended

for cool regions, were found to be more tolerant of cool temperatures but more

sensitive to heat compared to long grain cultivars. These results suggest that for

temperate rice systems, the occurrence of periodic stress events may currently

overshadow the impacts of general warming temperature on crop production.
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1 | INTRODUCTION

There has been considerable focus in recent years on the role of

increased temperatures on grain yield in agricultural systems, includ-

ing rice (e.g., Baker, 2004; Peng et al., 2004; Sheehy, Mitchell, & Fer-

rer, 2006; van Groenigen, van Kessel, & Hungate, 2013; Wang et al.,

2016; Welch et al., 2010; Zhang, Zhu, & Wassmann, 2010). This

focus is, in part, driven by the accumulated scientific evidence pre-

dicting that temperatures will increase between 1 and 5°C caused

by climate change (Stocker et al., 2013). Warmer temperatures

increase maintenance respiration and thereby decrease the amount

of carbohydrate available for yield formation (Amthor, 2012). Previ-

ous literature has suggested that Tmin, which is linked to nighttime

respiration, is particularly important as a driver of yield losses com-

pared to Tmax (Peng et al., 2004; Wang et al., 2016). However, using

field observations to estimate the impact of seasonal warming stress

on crop yield has proven difficult, with conflicting estimates of the

magnitude of the effect on crop yields in rice. Reported yield losses

from increased seasonal Tmin have ranged from large (e.g., 10% per

°C; Peng et al., 2004; Wang et al., 2016), to modest (e.g., 6% per °C

or less; Rehmani et al., 2014; Sheehy et al., 2006; Welch et al.,

2010), to little loss (e.g., Zhang et al., 2010).

One challenge in estimating the consequences of high tempera-

tures is the presence of other temperature-driven mechanisms which

also impact yield. One such mechanism is the reduction in crop yield

components (i.e., the number of plant organs available to develop

into grain) by high or low temperature point stresses during critical

times. In rice, reproductive crop stages (booting and flowering) are

particularly sensitive to these point temperature stresses. Booting

follows panicle initiation and ends when the panicle emerges from

the boot (i.e., the flag leaf sheath), while flowering starts when the

panicle emerges from the boot and ends when the spikelets have

completed anthesis (Counce, Keisling, & Mitchell, 2000). Early in

booting, the developing panicle is low on the plant, often at or

below flood water in paddy rice, and protected by plant tissue. Yet

cold temperature during this stage has been shown to damage cells

undergoing meiosis (Board, Peterson, & Ng, 1980; Farrell, Fox, Wil-

liams, & Fukai, 2006; Peterson, Lin, Jones, & Rutger, 1974), specifi-

cally as microspores release from tetrads in the early microspore

stage (Mamun, Alfred, Cantrill, Overall, & Sutton, 2006). This sensi-

tive phase of booting begins approximately 7 days following panicle

initiation and lasts approximately 15 days (Peterson et al., 1974)

(hereafter referred to as simply as “booting”). During the flowering

stage, the spikelets have emerged and are exposed at the top of the

plant, where they have been shown to be sensitive to both cold and

high temperature injury (Farrell et al., 2006; Horie, 1993; Van Oort,

Saito, Zwart, & Shrestha, 2014). Yield reduction can be the result of

damage to pollen grains or failure of pollen grains to release from

the anther (Farrell et al., 2006; Maruyama, Weerakoon, Wakiyama, &

Ohba, 2013; Wassmann et al., 2009). These reproductive point

stress mechanisms have been described as response to accumulated

degrees above (heat) or below (cool) a threshold, often referred to

as the “cooling-degree index” (Uchijima, 1976). The occurrence of

these point stresses can correlate with overall seasonal mean Tmin

and Tmax, confounding the estimation of either point stress or sea-

sonal warming yield loss mechanisms. At issue when using field data,

as opposed to growth chamber data, to simultaneously estimate

these effects is the reliance on natural variability to provide the

needed combination of temperatures required to separate the

effects. For example, there is no guarantee of heat stress at flower-

ing during an otherwise cool year, or vice-a-versa.

Rice systems in the Sacramento Valley, California (CA), USA, pro-

vide an ideal environment to quantify the impact of these yield loss

mechanisms. The climate in CA is characterized as a temperate

Mediterranean climate, with cool, wet winters and dry, warm sum-

mers. Due to the influence of cool air originating from the San Fran-

cisco Bay, there exists a natural temperature gradient south (cool) to

north (warm), while, unlike rice production systems in more humid

areas, the arid environment results in potentially large diurnal

changes in temperature (e.g., Tmax and Tmin in season of over 40°C

and under 12°C, respectively). This natural gradient allows compar-

isons between different locations within and between seasons,

which increases the likelihood to observe the aforementioned

required combination of temperatures. Furthermore, the production

system in CA is highly intensive and has low pest and disease pres-

sure, resulting in yield limited primarily by environmental factors.

Lastly, both short and medium grain types (temperate japonica, typi-

cally regarded as cold tolerant), and long grain types (temperate and

tropical japonica, typically regarded as heat tolerant and cold sensi-

tive) (Lu et al., 2005; Mackill & Lei, 1997) are grown in CA, allowing

for comparisons of the impact of point stresses between sensitive

and tolerant cultivars.

The primary objective of this study was to simultaneously esti-

mate the magnitude of the effects of two temperature-driven mech-

anisms on grain yield: (1) point stresses of warm and cool

temperature events during the reproductive stages of booting and

flowering, and (2) warm temperatures during the entire growing sea-

son and during grain-fill specifically. Secondarily, this study sought to

estimate the temperature thresholds for the three major grain types

(long, medium, and short grain) below or above which yield losses

occur during the sensitive crop stages of booting and flowering.

2 | MATERIALS AND METHODS

2.1 | Site and yield data description

Crop performance data were collected from the CA Statewide Rice

Variety Trials from 1995 to 2015. These trials were conducted annu-

ally in seven to nine commercial rice fields located throughout the

Sacramento Valley. Each trial was implemented using a completely

randomized design with four replicates and an average of 50 differ-

ent entries per location, including 4–12 checks (i.e., commercially

available cultivars of known performance for comparison to the

experimental lines). Seven cultivars (“A201,” “Calmochi-101,”
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“M-202,” “M-205,” “M-401,” “M-402,” and “S-102”) were present in

the trials for the entire study period (including years as test entries).

Experimental plots were 14.0–18.5 m2 and were planted similar to

commercial practice by either broadcasting pregerminated seed into

flooded field plots or by drill seeding into unflooded fields. Drill-

seeded plots were flooded approximately 21–30 days following plant-

ing. Field preparation, fertility, pest control, and water levels were

managed by farmers using conventional practices. For each plot, the

date when 50% of the plants reached the heading stage (referred to

as “50% heading” hereafter), plant height, percent lodging, and mois-

ture content at harvest were recorded. As the observed date of pani-

cle initiation was not observed, it was estimated using a thermal time

model calibrated for CA rice cultivars by Sharifi, Hijmans, Hill, and Lin-

quist (2016), who found little difference among cultivars in thermal

time from planting to panicle initiation. For the purposes of defining

crop stages, the vegetative stage was assumed to last from the date

of planting to panicle initiation, the sensitive boot stage from 7 days

after panicle initiation until 7 days prior to 50% heading, the flower-

ing stage from 7 days prior to 50% heading to 7 days after 50%

heading, and grain-fill from the date of 50% heading to 30 days fol-

lowing. As seeds in drill-seeded locations were not pregerminated

and were planted into unflooded fields, development from planting to

panicle initiation for drill-seeded plots was assumed to take an addi-

tional 7 days (typical of side-by-side comparisons of water vs. drill

seeding in CA; University of California Cooperative Extension, unpub-

lished data). All plots were harvested at maturity with a small-plot

combine and corrected to 14% moisture prior to reporting.

2.2 | Weather data

As sites were located proximate to several weather stations, temper-

atures for each site were estimated as a weighted average of tem-

peratures from the nearest weather stations. Input weather data

were retrieved from eighteen weather stations throughout the

Sacramento Valley (Figure 1, Table S1). Stations were chosen to

ensure coverage over CA rice growing area and sites and with at

least one station within 30 km of each site, prioritizing weather sta-

tions not located in urban areas or airports when possible. The site

temperatures were estimated using an inverse distance weighted

average according to the formula:

Ti ¼
Xn
j

wij � Tj (1)

where

wij ¼ dðxi; xjÞ�q (2)

where Ti is the estimated temperature (minimum or maximum) value

for site i, wij is the weight for weather station j at site i, and Tj is the

observed temperature at weather station j. The weights for weather

station j at site i were determined by the inverse distance d between

site i and weather station j. The power parameter q controls the

degradation of weights as stations become more distal to the site

and needed to be optimized before estimating the site temperatures.

The optimum value of q was determined via ninefold cross-validation

(i.e., two stations held out for each fold). The best predictions (low-

est cross-validation error) were achieved with q = .75. This value

was again verified using temperature data collected in-field at each

site during the 2015 season, with q = .75 also having good predic-

tive accuracy for the in-field data. Where there were missing values

in the source data, the weight for that source was set to zero and

the weights recalculated with the remaining stations. Geographic dis-

tances between stations were calculated using the Vincenty Ellipsoid

method.

2.3 | Model description

Data were analyzed using a probability-based linear model. To con-

trol for possible confounding effects and differences between obser-

vations (Gelman et al., 2013), inferences were conditioned on

relevant covariates (site, year, site: year interaction, cultivar, county,

grain type, plant height, days to heading, planting date, annual

trends). As this production system is known to experience high solar

radiation, with little to no cloud cover during the growing season

(Yoshida, 1981), solar radiation was not included in the model and

so the effect of solar radiation, if any, would fall into the more gen-

eral site, year, and site: year effects. Low correlation between solar

radiation and other variables of interest suggests little possibility of

solar radiation confounding other estimates (Fig. S1). Observations

where either yield or covariates were not recorded were excluded

F IGURE 1 Locations of weather stations, trial locations, and
seasonal mean temperatures for rice production areas averaged over
the period 1995 to 2015, in the Sacramento Valley, California, USA.
Not all trial locations and weather stations had data for each year
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from the regression. Additionally, instances where 50% heading

occurred earlier than 70 days following planting (the 1% quantile of

days to 50% heading) were also excluded (n = 179) because panicle

initiation in these instances is not well estimated by the thermal time

model, leading to a final data set of N = 27,021 observations. To

enforce sparsity in the regression and mitigate issues with overfitting

and collinearity, hierarchical shrinkage priors were implemented

using the HS3 parameterization (Piironen & Vehtari, 2016). Hierarchi-

cal shrinkage priors result in predictive performance similar to Baye-

sian model averaging (BMA) (Carvalho, Polson, & Scott, 2010), often

considered a gold-standard of predictive accuracy in statistical mod-

els (Madigan, Raftery, Volinsky, & Hoeting, 1996; Raftery, Madigan,

& Hoeting, 1997). Furthermore, to make the model robust to out-

liers, errors were assumed to be t-distributed with five degrees of

freedom (Lange, Little, & Taylor, 1989).

Due the difficulty in joint estimation of both the threshold and

impact of cool and heat point stress, the thresholds at which yield is

negatively impacted by temperature stress were determined prior to

assessing the impact of point stresses. To assess these thresholds,

simple cooling/heating-degree stress models were included inside

the linear regression. These models are based on the “cooling-degree

concept” (Uchijima, 1976). The submodels calculate the cooling or

heating stress experienced by the crop as a function the accumu-

lated number of degrees below or above a threshold during the crop

stage. The accumulated cooling or heating stress was calculated as:

Xn
i

fðTiÞ ¼ h� Ti; Ti � h
0; Ti [ h

�
(3)

and heating stress as,

Xn
i

fðTiÞ ¼ h� Ti; Ti � h
0; Ti [ h

�
(4)

where Ti is the daily Tmin or Tmax for day i in the crop stage of length

n d, and h is the estimated threshold. These submodels assume that

there is zero effect on yield above (cool) or below (heat) the thresh-

old. Values of the temperature thresholds were determined by grain

type by including the above submodels into the regression model

and optimizing for the most likely value of each threshold. To safe-

guard against settling on a local optimum, eight instances were initi-

ated at different starting values and convergence to similar solutions

was confirmed. These estimated thresholds were used to calculate

the accumulated cooling stress experienced by each observation

prior to fitting the final model. Although more complex, physiological

models exist for cooling and heating stress (e.g., Julia & Dingkuhn,

2013; Van Oort, de Vries, Yoshida, & Saito, 2015; Van Oort et al.,

2014), a simple linear response to accumulated stress was assumed

due to the empirical nature of the model.

The model was constructed incrementally and tested against sim-

ulated data before adding additional parameters to verify that the

model could recover a known signal. The final model was likewise

tested against multiple simulated data sets representing different

scenarios, including (1) no effect of either mechanism (point stresses

or warming temperature effects), (2) similar effects and thresholds

by major rice grain types, and (3) differing effects by major rice grain

types. The model was able to reliably recover simulated parameters

across all simulated data sets, suggesting that the model would con-

verge to the correct solution with observational data. To fit the final

model to observations, eight parallel instances were initialized at dif-

ferent points, and convergence to the same solution was verified. To

ensure the model estimates were not being unduly influenced by the

inclusion of sites known a priori to be cooler than typical (i.e., the

southern sites; Figure 1), the analysis was also run excluding these

sites. Similarly, the analysis was run excluding long-duration cultivars

due to concerns about those possibly being out of sequence with

the main field variety for which the trials were managed. Lastly, all

model diagnostics and posterior predictive checks were investigated

for issues prior to reporting the results.

2.4 | Data processing and model fitting

All data were programmatically transferred from the original data

sheets, error checked, and manipulated using the R statistical lan-

guage (R Core Team, 2016). Vincenty Ellipsoid distances between

sites and weather stations were computed using the “geosphere”

package for R (Hijmans, 2016). The model was fit using the Stan

probabilistic computing language (Stan Development Team, 2017b),

which implements the No-U-Turn sampler, a variation on Hamilto-

nian Monte Carlo sampling. Stan was chosen primarily due to its

flexibility fitting user-specified models. Threshold values were deter-

mined using Stan in optimization mode using the L-BFGS optimizer.

The final model was run using “cmdstan,” a command-line interface

to the Stan sampler (Stan Development Team, 2017a). To ensure

robust sampling and full exploration of the posterior distribution, the

Stan tuning parameters “adapt delta” and “maximum treedepth” were

increased. Model diagnostics were checked using the “shinystan”

package for R (Gabry, 2016). Relative effect sizes were determined

via a weighted parameter approach, where each parameter was

estimated as:

bij ¼ zij � wi (5)

where bij is the parameter for effect j in parameter group i, zij is the

parameter on a normalized scale, and wi is the weight, or relative

effect size for the parameter group i. All predictors were standard-

ized to z-scores to allow for easier comparison between parameters.

Yield loss in response to temperature stresses was calculated as the

difference between predictions with and without each stress. Ninety

percent credible intervals (CI), defined as the interval that contains

90% of the posterior density, were determined by the quantile

method. Ninety percent CIs are presented because 95% CIs show

high sampling variability (see https://groups.google.com/d/msg/stan-

users/zAr3EXpIe14/tHzmIZ_nAAAJ and http://andrewgelman.com/

2016/11/05/why-i-prefer-50-to-95-intervals/for further discussion

of this issue). The entire analysis, code, and supporting data are pub-

licly available through the Open Science Foundation (Espe, 2017).
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3 | RESULTS

The temperature thresholds below or above which the crop experi-

enced yield losses varied by grain type (Table 1). Medium and short

grain types were estimated to have better tolerance to cooling

stress during the booting stage, with temperature thresholds of

13.0°C and 13.8°C, compared to long grain types (17.2°C; Table 1).

However, all three grain types were estimated to have similar

thresholds (XoC) for cooling stress at flowering (Table 1). Long grain

types were estimated to have better tolerance to heat during flow-

ering and only experienced yield losses above an estimated thresh-

old of 38.7°C, while medium and short grains were estimated to

experience yield loss at lower temperatures (35.7 and 36.6°C,

respectively) (Table 1), although the total impact of heat during

flowering was low (Table 1).

The impact of point stresses during the reproductive stages of

booting and flowering was estimated to be approximately fivefold

higher than the impact of seasonal warming losses (Figure 2 and

Fig. S2). The largest estimated temperature-driven effect was found

to be cool stress during the booting stage, followed by cool stress at

flowering, heat stress during flowering, seasonal mean Tmax, seasonal

mean Tmin, mean Tmax during grain-fill, and lastly mean Tmin during

grain-fill (Figure 2; Fig. S2). For medium grains (the dominate grain

type in CA), the model estimated yield losses from point stresses of

64.6 kg/ha per °C below 13.0°C during booting, 34.0 kg/ha per °C

below 10.9°C during flowering, and 19.8 kg/ha per °C above 35.7°C

(Table 1, Fig. S2). Long grain types were estimated to experience lar-

ger losses from cooling stress during booting (14.4 kg/ha per °C

below 17.2°C) and flowering (38.9 kg/ha per °C below 11.9°C), while

short grains were estimated to experience less yield loss from cool

stress at booting (24.2 kg/ha per °C below 13.8°C), and higher losses

compared to long and medium grains due to cold at flowering

(31.9 kg/ha per °C above 36.6°C). All grain types were estimated to

have low losses due to heat at flowering, and hence, there was little

estimated difference in total yield loss due to heat stress during

flowering by grain type (data not presented). The occurrence of Tmin

below the estimated thresholds (a cool event) for booting and flow-

ering increased late in the season, with minimum cool events

observed during July (Figure 3a). Following Aug 1, the occurrence of

cool temperatures increased. Compared to observed booting and

flowering crop stages, relatively few observations of booting and

flowering occurred as early as July 1, but many observations

occurred following August 1 (Figure 3b).

There was no evidence in the observed data of increasing sea-

sonal mean temperatures or decreasing occurrence of days below

the estimated cooling thresholds in this region, even going back to

1985 (i.e., 10 years before the study period; see Figure 4). While

northern sites were warmer compared to southern sites (Figure 1),

cool temperature events during critical periods were experienced

even at the northern sites (e.g., the “Durham” station (Figure 4) is

in the northern end of CA rice area). The importance of point

stresses relative to seasonal warming losses was preserved even

when known cool sites were excluded from the regression

(N = 24,869), although the magnitude of the effects of cool stress

was decreased slightly (data not presented). As the inclusion of cool

sites allowed greater precision in estimating the impact of cooling

effects, only the results of the model including all sites are pre-

sented (N = 27,021). Similarly, exclusion of very late maturing culti-

vars did not have a significant impact on the estimates (data not

presented).

TABLE 1 The estimated impact of cool and heat stress during the
reproductive stages of booting and flowering for rice, the threshold
below (cooling) or above (heating) which the crop is estimated to
experience stress, and the maximum accumulated degrees below or
above the threshold observed over the period 1995 to 2015 in the
Sacramento Valley, California

Median 90% CI Threshold Max. accum.
(kg ha�1 °C�1) (°C) (

P
>°C)

Cooling at booting

Long 14.4 13.2–15.6 17.2 267

Medium 64.7 59–70.5 13 52

Short 24.2 19.7–28.6 13.8 83

Cooling at flowering

Long 38 20.5–56.5 11.9 21

Medium 34.3 7.8–63.1 10.9 11

Short 25.4 4.9–53.5 11.6 18

Heating at flowering

Long 70.8 44.9–97.4 38.7 7

Medium 19.7 14.6–24.8 35.7 31

Short 31.7 23.1–40.3 36.6 21

F IGURE 2 The estimated yield losses in rice of reproductive
point stresses (cool stress during booting, cool stress during
flowering, and heat stress during flowering) and seasonal warming
losses (mean Tmin and Tmax over the season and during the grain-fill
stage). Boxes cover the quartile of the marginal posterior
distributions of the losses from 27,021 observations over the period
1995 to 2015 in the Sacramento Valley, California, USA
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4 | DISCUSSION

Simultaneous estimation of the impact of point stresses and seasonal

warming losses revealed that the impact of point stresses is many

times greater than the impact of seasonal warming losses in this sys-

tem. Similar to estimates from other subtropical rice systems (Zhang

et al., 2014), point stresses during reproductive stages had a large

impact on yield (Figure 2). Furthermore, stress events were found to

be a persistent threat (Figure 4), and evidence that climate change is

increasing the occurrence of these extreme temperature events

(Buckley & Huey, 2016) makes it crucial to accurately estimate the

impact of these events. Yield losses to these point stress events are

a threat to yield stability and an important obstacle to meeting the

challenge of feeding the estimated five billion people who rely on

rice as a staple in their diet (Battisti & Naylor, 2009; Hatfield et al.,

2011; Khush, 2005; Tubiello, Soussana, & Howden, 2007). In the lat-

est report, the International Panel on Climate Change clearly stated

that the “first step towards adaptation to future climate change is

reducing vulnerability and exposure to present climate variability

(high confidence)” (Stocker et al., 2013). Therefore, increased aware-

ness of the current stressors on yields in temperate cereal

production systems is needed as a critical component of climate

adaptation and should not be overshadowed by long-term planning

for a warmer planet.

Based on these results, it is reasonable to question how the

effect of seasonal mean Tmin on yield, often speculated to reflect

respiratory losses, has been previously hypothesized to be a large

mechanism of yield loss (10% decrease per °C; Peng et al., 2004),

while there was a negligible effect estimated in our study (estimated

losses of approximately 1–2% per °C, Figure 5). Although the sea-

sonal mean Tmin values observed in this temperate system (11.7–

15.7 °C; Figure 5) were substantially lower than the Tmin values

observed in tropical and subtropical systems (19–25°C, Wang et al.,

2016; 22.0–23.8°C, Peng et al., 2004), it is unlikely that the temper-

ate systems used in this study were too cool to experience signifi-

cant yield losses from respiration given the current understanding of

the mechanisms involved. The impact of maintenance respiration is

expected to be nonlinear (Amthor, 2012), and based on the tempera-

ture coefficient concept (with the typical assumption of Q10 = 2),

maintenance respiration is expected to double per 10°C increase in

temperature (Lambers, Chapin, & Pons, 2008), or conversely, halve

per 10°C decrease in temperature. Hence, if it is assumed that 10%

yield decrease per °C is correct for the range 19–25°C, the effect of

warming temperatures on yield would be expected to be reasonably

strong at 12–16°C. To reconcile both 10% per °C at higher tempera-

tures and the negligible effect seen here, maintenance respiration

would need to triple or quadruple per 10°C (i.e., Q10 of 3–4). How-

ever, acclimatization to higher temperatures (expected during a warm

season) decreases seasonal warming losses (Atkin, Bruhn, & Tjoelker,

2005; Lambers et al., 2008), and recent research suggests the tem-

perature coefficient for rice might be closer to 1.5 (Peraudeau et al.,

2015). Lastly, and most critically, the estimates here for the impact

of seasonal Tmin are similar to estimates from controlled experiments

where temperatures were tightly controlled by researchers (as com-

pared to observational studies) (2.6% per °C; Rehmani et al., 2014).

Therefore, based on this accumulated evidence, it is possible that

10% yield loss per °C is an overestimate. Although direct attribution

of seasonal warming losses to respiratory mechanisms requires fur-

ther study, climate change scenarios assuming 10% yield loss per °C

may require revision.

One explanation for this discrepancy in the estimated importance

of seasonal warming losses is that many of these previous efforts

(e.g., Peng et al., 2004; Wang et al., 2016) failed to include possible

confounding factors into the analysis, such as site, year, and cultivar

effects. By not including these effects, previous analyses are implic-

itly relying on the strong assumption that given the environmental

variables (e.g., temperature), other differences between observations

are ignorable (Gelman et al., 2013). If that assumption is invalid,

which is likely given the preponderance of literature on site, year,

and variety effects in agricultural systems, the estimates are unlikely

to transfer beyond the original data set. In contrast to a priori

assumptions that these confounding effects are “relatively small”

(Wang et al., 2016), the analysis here conditions inference over

uncertainty induced by many possible covariates, including but not

F IGURE 3 Observed Tmin during the reproductive crop stages of
booting and flowering (a) and observed frequency of booting (dark
gray) and flowering (light gray) during the study period (b)
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limited to systematic differences between sites, cultivars, and years.

By conditioning on these differences between observations, the esti-

mates here rely on fewer strong assumptions for validity. Second, in

this study the effects of point stresses and seasonal warming losses

are simultaneously estimated, with the conclusion that once the

amount of cool and heat stress during booting and flowering is taken

into account, seasonal mean Tmin does not explain much additional

variation in yield. As the effects of point stresses and seasonal

warming losses tend to be correlated, it is possible that previous

estimates were attributing yield loss to the wrong mechanism. Lastly,

these differences might be due to differences between the data sets

used to make inferences; at N = 27,021, the data set used for this

analysis is orders of magnitude larger than the data sets used by

these previous efforts, and, as stated previously, were observed in a

system uniquely situated to separate these temperature effects.

The results here confirm medium and short grain cultivars bred

for temperate rice production systems are tolerant of cool tempera-

tures relative to long grain cultivars (Kim & Tai, 2011; Lu et al.,

F IGURE 4 Number of occurrences below the mean estimated threshold (14.0°C) during the period when booting typically occurs for
medium grain cultivars (a) and the mean seasonal Tmin over a typical season (b). Data are from the Durham weather station, located in the
northern part of the Sacramento Valley, California, USA, from 1985 to 2015. This station is located in an area generally considered warmer
than the southern part of the Sacramento Valley. Light gray lines are predicted regressions

F IGURE 5 The estimated effects of cool during the booting stage (a), cool during the flowering stage (b), heat during the flowering stage
(c), and season mean temperatures (d) on yield of long (L), medium (M), and short (S) grain rice cultivars in California, USA, from 1995 to 2015.
Cool and heat stress (a–c) have been standardized to be from 0 (no stress) to 4 (maximum stress) to make comparisons between stressors
possible. Presented estimates are the effect averaged over uncertainty in the other parameters in the model. The shaded areas are the 90%
credible intervals
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2005; Mackill & Lei, 1997; McKenzie, Johnson, Tseng, Oster, &

Brandon, 1994). The estimate for medium grain types (14°C) is simi-

lar to previous estimates (12.5–15°C; Board et al., 1980). However,

due to differences between collecting temperature data in-field,

where temperatures are buffered by the large mass of flood water

and plant matter verses at near-by weather stations, the estimates

here should be taken as approximations. These estimates also con-

firm long grain cultivars are not as tolerant of cool temperatures and

begin to experience yield loss at a higher temperature (16.3°C;

Table 1). It is notable that long, short, and medium grain types were

estimated to have similar tolerance of cool temperatures during the

flowering stage (Table 1), suggesting lower genotypic variability in

cooling tolerance during flowering compared to cooling tolerance

during booting. Although long grains were more tolerant to heat dur-

ing flowering compared to short and medium grains (Table 1), heat

stress was estimated to have relatively low impact compared to the

cooling stress at booting (Figure 2 and Fig. S2, Table 1); hence, med-

ium and short grain types will continue to be the most suitable grain

types for this system. It is worth noting, however, that high vapor

pressure deficit (VPD) in CA’s arid climate may have resulted in sig-

nificant transpirational cooling of the panicles (Julia & Dingkuhn,

2013; Van Oort et al., 2014, 2015). Thus, rice may not have experi-

enced as severe heat-induced sterility compared to similar tempera-

tures in a more humid climate. Furthermore, it has been shown that

there can be large genotypic variation in the ability of different rice

cultivars to cool the panicles through this mechanism (Julia & Ding-

kuhn, 2013). Therefore, the estimate for the relative impact of heat

stress during flowering may not be accurate for humid areas with

low VPD. Lastly, although the estimates for point stresses represent

the average sensitivity by major grain types and significant differ-

ences within grain types may exist (Julia & Dingkuhn, 2013) and

could present opportunities for improvement in these traits through

plant breeding. Evidence here suggests greater resistance to point

stresses would increase yield stability in these systems.

The findings here can provide a foundation for future work.

Although collecting the data for this study from a single geographic

region with highly intensified management decreased confounding

effects compared to using data generated from more varied systems, it

introduces some uncertainty when extrapolating beyond this system.

Follow-up work confirming these estimates in tropical and other tem-

perate systems could further improve the accuracy of these estimates

and support climate change impact assessments. Second, this analysis

is intrinsically empirical, and while the results provide estimates for the

magnitude of various temperature effects, mechanistic models need

improvement to better capture the effects estimated here. As noted

elsewhere, the current ability of physiological models to capture these

mechanisms is limited (Espe, Yang, et al., 2016; Van Oort et al., 2015).

Improved physiological models would allow better understanding of

the yield potential in these systems (Espe, Cassman, et al., 2016;

Zhang & Tao, 2013; Zhang et al., 2014) and allow better simulation-

driven investigation of not only the future impacts of climate change

but also the current vulnerability of these systems to current climate

variability. Lastly, while this study has been concerned with the impact

of temperature-driven effect, the estimation of the impact of other

factors, such as solar radiation, can be made more accurate by control-

ling for the confounding influence of point stresses.

The ability of agricultural systems to continue to feed the world’s

population relies on producing more food in the face of uncertainty,

both current and future. Previous literature has identified seasonal

warming losses due to increased temperatures as a key concern for

agricultural systems in the future. However, evidence here suggests

that point stresses during the reproductive stages are currently

impacting agricultural yield in temperate rice production systems

more than seasonal warming losses. Point stresses have a direct

effect on yield stability; hence, efforts to increase the resilience and

continued improvement of agricultural systems need to account for

this current state of affairs, even while planning for the future. Evi-

dence of genetic variability in the response of different grain types

to these stresses suggests opportunities for breeding programs to

increase yield stability in the face of a changing world.
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