
crop science, vol. 57, january–february 2017   www.crops.org 1

ReseaRch

The ability to accurately predict crop development is essen-
tial for the accuracy of crop growth simulation models 

(Penning de Vries et al., 1989; Yin et al., 1997). Crop models 
have been widely used to evaluate crop responses to climate 
change (Mall and Aggarwal, 2002; Yao et al., 2007; Wang et al., 
2014), ecosystem productivity (White et al., 2009), yield gaps (van 
Ittersum et al., 2013; Espe et al., 2016), management practices 
(Awan et al., 2014), and technological change (Hijmans et al., 
2003). Temperature and photoperiod are the primary environ-
mental factors affecting crop development (Gao et al., 1992; Yin 
et al., 1996; Streck et al., 2011). While photoperiod only affects 
photoperiod-sensitive cultivars (and only during a discreet stage 
of development), temperature affects all cultivars during the 
entire growing season (Yin and Kropff, 1998). Many crop models 
simulate crop developmental (i.e., phenological) stages based on 
temperature and photoperiod, including Oryza2000 (Bouman et 
al., 2001), CERES-Rice ( Jones et al., 2003), the Rice Clock model 
(Gao et al., 1992), and the b model (Yin et al., 1997). Others, such 
as DD10 (DD50 for the Fahrenheit scale; Keisling et al., 1984; 
Counce et al., 2009), simulate based on temperature only. In this 
study, we only focus on the effect of temperature on crop phenol-
ogy, as the cultivars of interest were not photoperiod sensitive.
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ABSTRACT
Crop phenology models that use constant 
temperature parameters across developmental 
stages may be less accurate and have 
temperature-dependent systematic prediction 
error (bias). Using the DD10 model, we evaluated 
default and optimized (DD_Opt) temperature 
parameters using data from seven California rice 
(Oryza sativa L.) cultivars grown in six locations 
over 3 yr (2012–2014). Furthermore, we evaluated 
the effect of using stage-dependent temperature 
parameters on model performance using two- and 
three-stage optimization approaches. Optimized 
temperature parameters, or DD_Opt (RMSE: 
2.3–5.4 d), performed better than DD10 (RMSE: 
2.9–7.3 d). A temperature sensitivity analysis 
indicated that the time from planting to panicle 
initiation was most sensitive to temperature 
(every 1°C increase decreased days to panicle 
initiation by 1.8 d) while time from heading to R7 
(marked by the appearance of one yellow hull 
on the main stem panicle) was not affected by 
temperature. Optimized temperature parameters 
varied between stages, with base temperature 
decreasing and optimum temperature increasing 
with plant development. Compared to the DD_
Opt, two-stage optimization (planting–heading 
and heading–R7) reduced the RMSE by 0.8 d 
and the systematic error by 0.6 d °C−1. Three-
stage optimization (planting–panicle initiation, 
panicle initiation–heading, and heading–R7) 
further reduced RMSE by 1.1 d and systematic 
error by 1.4 d °C−1 for preheading. These results 
demonstrate the importance of using stage-
dependent parameters to improve accuracy of 
phenological models, which may be important 
when models are used to study the crop 
response to climate change, field management 
options, ecosystem productivity, breeding, and 
yield gap analysis.
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For temperature-based phenology models (i.e., 
DD10), developmental rate is generally modeled in rela-
tion to thermal time accumulation (Gao et al., 1987; Yin 
et al., 1996). It is assumed that a certain amount of ther-
mal time (degrees per day, °C d−1) is needed to complete 
a given developmental stage (Gao et al., 1992; Summer-
field et al., 1992). Thermal time accumulation is generally 
computed as a summation over time (e.g., days) of the 
temperature above a base temperature (Tb), and capped at 
an optimum temperature (Topt), with no further develop-
ment occurring above a maximum temperature threshold 
(Tmax) or below Tb (Zhang et al., 2008). These tempera-
ture thresholds are known as ‘cardinal temperatures.’ The 
development rate parameters are generally computed as 
the reciprocal of the required thermal time, such that the 
product of the rate and the required thermal time is one. 
In this study, we refer to cardinal temperatures and devel-
opmental rate constants as ‘temperature parameters.’

Most phenological models share the assumption that 
plants have the same response to temperature across all 
growth stages (van Oort et al., 2011), and therefore the 
same temperature parameters are used for pre- and post-
flowering stages (Timsina and Humphreys, 2006; Yao et 
al., 2007; Zhang and Tao, 2013). For example, in rice, 
both Oryza2000 and DD10 use a constant value for Tb 
and Topt throughout pre- and postflowering (8°C for Tb 
and 30°C for Topt in Oryza2000; 10°C for Tb and 34.4°C 
for Topt in DD10).

There is evidence for wheat (Triticum aestivum L.; Slafer 
and Rawson, 1995) and faba beans (Vicia faba L.; Ellis et 
al., 1988) that optimal temperatures (in this case, Tb and 
Topt) differ among crop developmental stages. For rice, it 
has been reported that the base temperature is lower during 
postflowering than during the preflowering stage (Ding-
kuhn et al., 1995; van Oort et al., 2011). While differential 
optimum temperatures among development stages have 
been reported, the effect of stage-dependent temperature 
parameters in models has not been evaluated. Nonetheless, 
given the importance of temperature parameters in crop 
phenology model performance, it is surprising that more 
attention has not been given to improving phenological 
model calibration (Mall and Aggarwal, 2002; Confalonieri 
et al., 2005).

Another issue to consider in phenology models is 
temperature-dependent systematic prediction error 
(henceforth referred to as systematic error). This systematic 
error is manifest in consistent over- or underpredictions 
of developmental rate as temperature changes. Others, 
based on using the Oryza2000 phenology submodel, have 
suggested that using default cardinal temperature values 
may result in systematic error (van Oort et al., 2011; Li et 
al., 2015). van Oort et al. (2011) indicated that it is espe-
cially important to evaluate systematic error when models 
are used outside of their original calibration temperature 

range. Both van Oort et al. (2011) and Yao et al. (2007) 
demonstrated that calibration of cardinal temperatures in 
Oryza2000 increased model accuracy and reduced sys-
tematic error compared to using default values.

The DD10 model was first developed in the 1970s by 
the University of Arkansas, Cooperative Extension Service 
to help rice growers improving the timing of midseason 
nitrogen application (Slaton et al., 1993). Since then, the 
DD10 model has been widely used in rice-producing 
areas in the southern United States (Keisling et al., 1984; 
Counce et al., 2015) and is used to predict developmental 
stages in rice cultivars. Using the thermal time concept 
employed in the DD10 model, the objectives of this study 
were (i) to determine if optimal temperature parameter 
values differ among developmental stages in rice, and (ii) 
to quantify the effect of using stage-dependent temper-
ature parameters on model performance and systematic 
error relative to using constant optimized temperature 
parameters across all stages.

MATeRiAlS And MeThodS
data
Field trials were conducted during the 2012 to 2014 growing 
seasons, next to the California Statewide Variety Trials (http://
rice.ucanr.edu/) located in six counties of the Sacramento Valley 
in California. All fields were managed using the water-seeded 
system typical of California. That is, fields are preflooded, and 
presoaked seeds are broadcast via airplane into the flood water. 
The fields remain flooded throughout the season until about 
3 wk before harvest, when the fields are drained in prepara-
tion for harvest. To maintain the floodwater height in the field, 
water continually flows into the field, except for brief periods 
when the floodwater in the field needs to be lowered for some 
reason (e.g., herbicide applications). The cultivar plots (each 
plot was 18.6 m2) within these fields were managed identically 
to the main field, except that presoaked seeds were broadcast by 
hand into the plots. Phenological data were collected for seven 
rice cultivars with a range of maturation times (Table 1). These 
cultivars represent the majority of cultivars grown in Califor-
nia. Given the California climate, early-maturing cultivars are 
preferred and are planted on approximately 70 to 75% of the 
area. A medium-grain temperate japonica cultivar, M-206, is 
the most common and is planted in approximately 50% of the 
area (California Cooperative Rice Research Foundation, 2014).

The rice growth staging system developed by Counce et 
al. (2000) was used to identify three specific rice developmental 
stages: panicle initiation (PI, or R0), 50% heading (R3), and 
R7 (marked by the appearance of one yellow hull on the main 
stem panicle). Crop growth stage data were collected every 2 
d during the periods of interest. The time to PI was deter-
mined when a dark green circle (i.e., “green ring”) formed 
below the last-initiated leaves of the culm and initiated panicle 
(Counce et al., 2000). The day for 50% heading was when 50% 
of the panicles were fully exerted. This occurs about 1 to 3 
d before flowering (the R4 stage; De Datta, 1981; Counce et 
al., 2015). While it would have been ideal for the model to 
project through to physiological maturity (the point at which 

https://www.crops.org
http://rice.ucanr.edu
http://rice.ucanr.edu


crop science, vol. 57, january–february 2017  www.crops.org 3

Model optimization and Systematic error
Model Optimization and Evaluation
We first evaluated the DD10 model with its default cardinal 
temperature values using the 2012 to 2014 California data. To 
obtain the optimal temperature parameter values and evaluate 
the effect of stage-dependent temperature parameters on model 
performance and systematic error, three model simulations were 
conducted using the same thermal time concept as described 
for the DD10 model: single-stage, two-stage, and three-stage 
model simulations. In all simulations, we optimized all param-
eters (cardinal temperatures and thermal times) in the model 
(see below). In the single-stage simulation model (default and 
optimized, DD_Opt), the thermal time was calculated based on 
the assumption that cardinal temperature parameters are con-
stant across all developmental stages (from PL to R7). In the 
two-stage simulation (DD_2S), the model was expanded such 
that the thermal time accumulation was based on stage-depen-
dent cardinal temperature parameters for preheading (from PL 
to HD) and postheading (from HD to R7) stages. The three-
stage simulation model (DD_3S) uses stage-dependent cardinal 
temperature parameters for three developmental stages: from 
PL to PI, PI to HD, and HD to R7.

We used a fivefold cross-validation statistical procedure to 
assess the prediction accuracy of optimized model parameters 
in DD10, DD_Opt, DD_2S, and DD_3S for all developmen-
tal stages. In this procedure, the data is randomly divided into 
K-fold (in this paper K = 5) datasets of approximately equal 
size ( Jones and Carberry, 1994; Kohavi, 1995). Model results 
are presented as the mean of the resulting five sample RMSEs 
( James et al., 2013).

The R environment for statistical computing was used to 
implement and optimize the parameter values of the models 
(cardinal temperatures and thermal times), using the ‘optim’ 
function with the default method of Nelder and Mead (R Core 
Team, 2015). The optimization objective was set to minimize 
the RMSE (Eq. [2] below) for duration of a development stage 
(d) and systematic error (Eq. [3] below), minimizing the slope of 
the regression line between RMSE and average seasonal temper-
ature in a given stage. Root mean square error was calculated as:

1 2 0.5RMSE [ (SIM OBS) ]n-= -å  [2]

where n is the number of observations, SIM is the predicted 
duration (d), and OBS is the observed duration (d).

carbohydrate accumulation ceases), physiological maturity is 
difficult to determine (Espe et al., 2016). In this study, R7 was 
used as a proxy for physiological maturity. Counce et al. (2000) 
indicated that physiological maturity typically occurs between 
R7 and R8 (R8 is when one brown hull appears on the main 
stem panicle). We used R7 because it was more objectively 
identifiable than R8 for the cultivars in this study. Across field 
trials, planting dates ranged from 29 April to 29 May, and time 
to PI from 45 to 58 d, PI to heading (HD) from 22 to 47 d, and 
HD to R7 from 13 to 29 d (Table 1).

For each location, weather data were obtained from the 
nearest (always within 20 km) California Department of Water 
Resources CIMIS (California Irrigation Management Informa-
tion Systems) weather station (Snyder et al., 2001). California 
Irrigation Management Information Systems weather stations 
are a network of 145 automated weather stations in California, 
with the overall goal of increasing water use efficiency (http://
www.cimis.water.ca.gov).

dd10 Model
Recently, Counce et al. (2015) used DD10 to present a thermal 
time sum data set on rice reproductive developmental stages 
for six rice cultivars in Arkansas. In DD10, daily thermal time 
accumulation is used to model rice development. A certain 
amount of thermal time is needed to complete a given develop-
mental stage. The thermal time accumulated in each time step 
(in this case, t = 1 d) is calculated as follows:

max min bTT max(0, [0.5( ) ])t T T T= + -  [1]

min l min lifT T T T= >

max opt max opt if  T T T T= >

where TTt is the thermal time at time t, Tmax is the daily maxi-
mum temperature, Tmin is the daily minimum temperature, Tb 
is the base temperature, Tl is the lower threshold, and Topt is the 
optimum threshold. There is no development (i.e., TTt below 
zero is set to zero) below Tb (here 10°C), and since Tmax that 
are greater than Topt are set equal to Topt, there is no increase 
in development for daily maximum temperatures above Topt. 
Similarly, for Tmin, since Tmin that are greater than Tl are set 
equal to Tl, there is no increase in development for daily 
minimum temperatures above Tl. The default values for these 
‘cardinal temperatures’ are Tb = 10°C, Tl = 21.1°C, and Topt = 
34.4°C (Counce et al., 2009). These values were obtained using 
common cultivars and weather data from 13 sites in Arkansas 
(Slaton et al., 1993).

Table 1. Characteristics and duration of various stages of cultivars used in the study.

Cultivar Maturity Grain type
Planting to panicle 

initiation
Panicle initiation to 

heading) Heading to R7
————————————————— d ————————————————

CM101 Very early Short 46–56 25–36 16–23

L206 Very early to early Long 46–58 27–39 13–21

M104 Very early Medium 45–56 22–34 13–27

M202 Early Medium 47–58 31–45 14–29

M205 Early Medium 47–58 33–47 16–29

M206 Very early to early Medium 47–56 26–38 16–27

S102 Very early Short 46–56 24–35 15–26

https://www.crops.org
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Stage-Dependent Temperature Sensitivity
The observed duration of a given phenological stage was plot-
ted against the mean temperature during the same period, 
which allows for an evaluation of whether that stage is sensitive 
to temperature (van Oort et al., 2011). An analysis of covariance 
was used to determine if the resulting slopes of the regression 
lines for stage were different from one another (Chatterjee and 
Hadi, 2015).

Systematic Error
For a given stage, we calculated the systematic error by fitting 
a linear regression model of RMSE as a function of mean tem-
perature (van Oort et al., 2011). Systematic error is calculated 
using the following equation:

( )E T= a+b   [3]

where E is the prediction error (SIM − OBS), T is the average 
temperature during a given stage, a is the intercept (the random 
error),b is the slope, and b(T ) is the systematic error. The larger 
the b, the larger the temperature-dependent systematic error; 
thus, a b closer to zero is preferred. The unit for b is days per 
1°C change in temperature (d °C−1).

ReSulTS
Single-Stage Models: dd10 versus dd_opt
Optimal Temperature Parameters
For DD_Opt, with the exception of Topt in cultivar 
M205, there was little difference in optimized tempera-
ture parameters among cultivars for the values of Tb, 
Tl, and Topt (Table 2). Optimized values across culti-
vars averaged 11.5°C (range:11.2–11.9°C) for Tb, 13.2°C 
(range: 13–13.5°C) for Tl, and 32.7°C (range [not includ-
ing M205]: 32.5–32.9°C) for Topt. The largest difference 
between DD10 and DD_Opt was for Tl (21.1 versus 
13.2°C). Cultivar M205 was different than the other cul-
tivars with respect to Topt which was 29.3°C—almost 3°C 
lower than the cultivar mean of 32.2°C; however, its Tb 
and Tl values were similar to those of other cultivars.

DD_Opt versus DD10
The ability of the DD_Opt to predict time to various stages 
was similar for all cultivars in terms of accuracy (RMSE) 
and systematic error (b, Table 3, Fig. 1). Given these results 
and that there was almost no difference among cultivars 
in terms of optimal temperature parameters, we will focus 
on results averaged across cultivars. The DD_Opt model 
improved accuracy compared with the default parameters of 
DD10, particularly for the PI to HD and HD to R7 stages, 
where the RMSE was reduced by 1 and 1.3 d, respectively 
(Table 3). The DD_Opt also improved the RMSE for PL to 
PI stage, but to a smaller degree (0.6 d).

The bias in developmental rates in response to tem-
perature (b) averaged less than 2.5 d °C−1 for both models 
and across all growth stages (Table 3). Systematic error 
was highest for PL to PI (2.4 and 1.8 d °C−1 in DD10 and 
DD_Opt, respectively) and between 0.1 and 1.5 d °C−1 

for the other stages. Nonetheless, the DD_Opt model 
improved systematic error by reducing b from 2.4 to 1.8 d 
°C−1 for PL to PI, 1.5 to 0.1 d °C−1 for PI to HD, and 0.9 
to 0.5 d °C−1 for the HD to R7 stage (Table 3).

Two- and Three-Stage Models: dd_2S  
and dd_3S
Optimal temperature parameters
The DD_2S model optimizes temperatures separately 
for two stages (PL–HD and HD–R7), while the DD_3S 
model divides the PL to HD stage into two stages and thus 
optimizes for three stages (PL–PI, PI–HD, and HD–R7). 
On average, compared with DD_Opt, DD_2S had higher 
Tb values (1.8°C) during PL to HD than HD to R7, while 
Topt values were 3.8°C higher during HD to R7 than in 
PL to HD (Table 2). Variation in the cardinal temperature 
parameters among cultivars was greater for DD_2S than 
for DD_Opt, particularly for Tl during PL to HD (range: 
13.1–18.2°C), Tb during HD to R7 (range: 6.0–9.9°C), 
and Topt during HD to R7 (range: 29.4–38.7°C).

Since the only difference between the DD_2S and the 
DD_3S models is before HD, output results are identical 
for these models in the HD to R7 stage. In the DD_3S 
model, variability in temperature parameters among cul-
tivars was less in the PL to PI and PI to HD stages as 
compared with the HD to R7 stage (Table 2).

DD_2S and DD_3S Models Performance
Compared to DD_Opt, DD_2S improved prediction 
accuracy (RMSE) of PL to HD from 4.2 to 3.4 d, while 
the RMSE was identical (4.9 d) for HD to R7 (Table 3). 
In addition, DD_2S reduced systematic error during PL 
to HD by 0.6 d °C−1—from 2.0 to 1.4 d °C−1—but was 
similar for both models for the HD to R7 stage.

Relative to DD_Opt, the DD_3S model improved 
prediction accuracy by 0.4 d during the PL to PI stage, 
but there was little difference for the PI to HD (0.1 d dif-
ference) and HD to R7 stages (Table 3). During PL to PI, 
systematic error was reduced to 0.6 d °C−1 (range: 0.4–1.3 
d °C−1) using DD_3S and to 1.8 d °C−1 (range: 1.2–2.2 d 
°C−1) using DD_Opt.

Directly comparing DD_2S with DD_3S indicates 
that the DD_3S model had better prediction accuracy (3.4 
versus 2.8 d) and b (1.4 versus 0.9 d °C−1) for the PL to HD 
stage (Fig. 2). Both models resulted in similar RMSE and 
b during the HD to R7 stage.

In the DD_2S model, for all cultivars (and in particu-
lar for L206 and S102), changes in Topt did not significantly 
affect the overall model performance during HD to R7 as 
compared with DD_Opt, in which there was no differ-
ence between cultivars in Topt values (Table 3). Root mean 
square error was only reduced by 0.2 d for L206 and was 
increased by 0.3 d for S102 during HD to R7 in DD_2S 
as compared with DD_Opt.

https://www.crops.org
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were not significantly (p = 0.3, data not shown) different for 
PL to PI and PI to HD; however, slopes are significantly (p = 
0.015, data not shown) different for PL to PI and HD to R7.

diSCuSSion
The DD10 model using default cardinal temperatures 
values had poor predication accuracy and higher system-
atic error for California cultivars and climate. This may be 
due to higher diurnal mean temperature in the southern 
United States than in California, under which conditions 
the southeastern cultivars were developed and for which 

Stage-Dependent Temperature Sensitivity

For the sensitivity analysis, mean temperatures during PL 
to PI, PL to HD, and HD to R7 ranged from 20.5 to 
23.1, 22.5 to 25.8, and 21.2 to 25.9°C, respectively (Fig. 
3). Across cultivars, the duration of PL to PI was most 
affected by temperature, with every 1°C change in mean 
temperature changing time to PI by 1.8 d. For the PI to 
HD stage, a 1°C change in mean temperature resulted in 
a 1.2-d change in days to HD. The HD to R7 stage was 
not affected by temperature. Using analysis of covariance to 
compare the slopes of regression lines indicated that slopes 

Table 2. Default and optimized model parameters for the planting to panicle initiation (PL–PI), panicle initiation to heading 
(PI–HD), HD to R7, PL to HD, and PL to R7 stages for the various optimization models. Tb, Tl, and Topt are the base, lower, and 
optimum temperatures, respectively.

Cultivar Model

PL–PI PI–HD HD–R7 PL–HD PL–R7

Tb Tl Topt Tb Tl Topt Tb Tl Topt Tb Tl Topt Tb Tl Topt

——————————————————————————————————————         °C ——————————————————————————————————————
Cultivar 
mean

DD10 – – – – – – – – – – – – 10 21.1 34.4

DD_Opt – – – – – – – – – – – – 11.5 13.2 32.7

DD_2S – – – – – – 8.9 15.9 32.9 10.7 16.1 29.1 – – –

DD_3S 9.9 14.2 27.7 8.6 16.2 31.2 8.9 15.9 32.9 – – – – – –

CM101 DD10 – – – – – – – – – – – – 10 21.1 34.4

DD_Opt – – – – – – – – – – – – 11.5 13.5 32.7

DD_2S – – – – – – 9.7 16.7 31 10.1 14.3 29.9 – – –

DD_3S 10 14.8 28.1 7.8 17.5 32 9.7 16.7 31 – – – – – –

L206

DD10 – – – – – – – – – – – – 10 21.1 34.4

DD_Opt – – – – – – – – – – – – 11.5 13.2 32.7

DD_2S – – – – – – 6 14.9 38.7 10.2 14.3 29.1 – – –

DD_3S 10 14.4 28.2 9.2 16.5 32.7 6 14.9 38.7 – – – – – –

M104

DD10 – – – – – – – – – – – – 10 21.1 34.4

DD_Opt – – – – – – – – – – – – 11.4 13.1 32.6

DD_2S – – – – – – 9.8 16.1 32.2 9.8 13.1 29.8 – – –

DD_3S 9.3 13.1 27 7 17.7 29.9 9.8 16.1 32.2 – – – – – –

M202

DD10 – – – – – – – – – – – – 10 21.1 34.4

DD_Opt – – – – – – – – – – – – 11.9 13.1 32.5

DD_2S – – – – – – 9.4 16.2 34.7 11.5 17.7 29.1 – – –

DD_3S 9.8 13.5 27.7 10.2 16 30.2 9.4 16.2 34.7 – – – – – –

M205

DD10 – – – – – – – – – – – – 10 21.1 34.4

DD_Opt – – – – – – – – – – – – 11.2 13 29.3

DD_2S – – – – – – 7.8 16.4 31.2 11.8 18.2 29.8 – – –

DD_3S 10.3 15.1 28 9.6 13.6 28.9 7.8 16.4 31.2 – – – – – –

M206

DD10 – – – – – – – – – – – – 10 21.1 34.4

DD_Opt – – – – – – – – – – – – 11.7 13.1 32.9

DD_2S – – – – – – 9.5 15.2 33.2 11.2 17.7 30.3

DD_3S 9.9 14.3 27.5 9.6 16.5 33.1 9.5 15.2 33.2 – – – – – –

S102

DD10 – – – – – – – – – – – – 10 21.1 34.4

DD_Opt – – – – – – – – – – – – 11.5 13.2 32.7

DD_2S – – – – – – 9.9 15.6 29.4 10.2 17.5 29.5 – – –

DD_3S 9.8 14.3 27.5 6.7 15.5 31.6 9.9 15.6 29.4 – – – – – –

https://www.crops.org


6 www.crops.org crop science, vol. 57, january–february 2017 

Table 3. Model simulation results from the cross-validation procedure for all models. Systematic error (b, d °C−1) is the slope 
of the regression line between RMSE (prediction accuracy, d) and average temperature for the given stage. The stages are: 
planting to panicle initiation (PL–PI), panicle initiation to heading (PI–HD), PL to HD, and HD to R7.

Cultivar Model

PL–PI PI–HD PL–HD HD–R7

b RMSE b RMSE b RMSE b RMSE

d °C−1 d d °C−1 d d °C−1 d d °C−1 d

Cultivar mean DD10 2.4 3.3 1.5 4.8 3.3 4.5 0.9 6.2

DD_Opt 1.8 2.7 0.1 3.8 2 4.2 0.5 4.9

DD_2S – – – – 1.4 3.4 0.6 4.9

DD_3S 0.6 2.3 0.3 3.7 0.9 2.8 0.6 4.9

CM101 DD10 2.1 2.9 2.3 3.7 3.7 3.6 0.5 5.6

DD_Opt 1.9 2.4 1.2 3 1.5 3.4 0.3 4.7

DD_2S – – – – 1.3 2.5 0.4 4.4

DD_3S 0.6 2 1.4 3 0 2.5 0.4 4.4

L206 DD10 2.1 2.9 0.8 4.4 3.2 4.5 0.1 5.8

DD_Opt 1.7 2.3 -0.3 4.2 1.8 4.4 -0.2 4.7

DD_2S – – – – 1.1 3.7 0 4.9

DD_3S 0.5 2.5 0.2 4.1 0.7 2.7 0 4.9

M104 DD10 2.7 3.2 1.5 4.6 3.1 4.4 0.3 7

DD_Opt 2.2 2.7 0.5 4.1 2.1 4.1 0.1 5.2

DD_2S – – – – 1.3 3.2 0.2 5.5

DD_3S 0.4 2 0.8 3.9 0.4 3.1 0.2 5.5

M202 DD10 2.4 3.8 2.1 5.9 3.8 5.5 1.1 6.6

DD_Opt 2.1 3.1 0.5 4.8 2.5 4.8 0.8 4.7

DD_2S – – – – 2 4.4 1 4.7

DD_3S 0.6 2.6 0.8 4.4 1.9 3.2 1 4.7

M205 DD10 2.8 3.7 1.3 5.9 4.2 5.6 2.3 7.3

DD_Opt 1.2 2.7 -0.8 3.8 2.7 5.0 1.9 5.4

DD_2S – – – – 3 4.3 1.9 5.3

DD_3S 1.3 2.5 -0.7 4.2 2.1 3.5 1.9 5.3

M206 DD10 2.2 3.5 0.5 4.5 2.2 4.1 1.7 5.7

DD_Opt 1.8 2.7 -0.8 3.8 2.3 4.2 1 4.7

DD_2S – – – – 0.2 3.0 1.2 4.4

DD_3S 0.4 2.5 0 3.5 1 2.4 1.2 4.4

S102 DD10 2.4 3.3 1.8 4.3 3.3 3.6 0.4 5.6

DD_Opt 2 2.7 0.5 2.9 1.5 3.0 -0.1 5

DD_2S – – – – 0.6 2.8 -0.2 4.8

DD_3S 0.6 2.2 0.2 3.1 0.5 2.4 -0.2

Fig. 1. Box and whisker plots of the cultivar mean RMSE (d) for planting (PL) to panicle initiation (PI), PI to heading (HD), and HD to R7 
stages for the DD_3S, DD_Opt, and DD10 models. The horizontal line within the box indicates the median, the boundaries of the box 
indicate the 25th and 75th percentile, and the whiskers indicate the highest and lowest values of the results.
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the model was originally calibrated (Slaton et al., 1993). 
Furthermore, cultivars in the southeastern United States 
are predominately derived from tropical japonica cultivars, 
while California cultivars are temperate japonica (Lu et al., 
2005). Temperate japonica cultivars are mainly found in 
temperate regions such as northern Japan and California 
(Mackill and Lei, 1997). Mackill and Lei (1997) charac-
terized a diverse set of mainly japonica rice cultivars for 

traits related to adaption to low temperature. They found 
that tropical japonica cultivars were usually intermedi-
ate between temperate japonica and indica cultivars with 
respect to adaptation to temperate regions.

Optimizing temperatures in the various models 
(DD_Opt, DD_2S, and DD_3S) resulted in improved 
prediction of duration to various phenological stages, 
with the RMSE values ranging from 2 to 5 d (Fig. 1, 
3). The model accuracy is comparable with, or better 
than, other studies in which RMSE ranged from 2 to 
7 d for Oryza2000 (Zhang et al., 2008; Wikarmpapra-
harn and Kositsakulchai, 2010; Zhang and Tao, 2013) and 
CERES-Rice (Alocilja and Ritchie, 1991; Timsina and 
Humphreys, 2006; Yao et al., 2007) for both pre- and 
postheading stages.

There was no difference in response to temperature 
between PL to PI and PI to HD; however, PL to PI was sig-
nificantly different than HD to R7 and was thus most likely 
to be responsive to stage-dependent cardinal temperature 
parameter optimization (Fig. 3). Our result substanti-
ated the results of van Oort et al. (2011), showing that the 
postheading stage is not responsive to temperature, and 
therefore most variation in crop development occurs before 
flowering (Roberts et al., 1993). The mean temperature in 
the temperature sensitivity analysis of van Oort et al. (2011) 
ranged from 17.8 to 31.4°C for the preflowering and 17 to 
33°C for the postflowering stage—a wider temperature 
range than in our study (range: 20–26°C), which suggests 
the applicability of results across wider temperature ranges.

Contrary to what is often assumed (Summerfield et 
al., 1992; Bouman and van Laar, 2006; Ahmad et al., 
2012), we found that optimal temperature parameters are 
not the same across phenological stages. The physiologi-
cal basis for differences in cardinal temperature between 
stages is unknown (White et al., 2012). Cardinal tempera-
tures have been linked to enzyme kinetics (Parent and 

Fig. 2. For the planting (PL) to heading (HD) stage, box and whisker plots of the cultivar mean RMSE (d) and b (days °C−1, b is the slope 
of the regression line between RMSE and average seasonal temperature) for the DD_2S, DD_3S, and DD_Opt models. The horizontal 
line within the box indicates the median, the boundaries of the box indicate the 25th and 75th percentile, and the whiskers indicate the 
highest and lowest values of the results.

Fig. 3. Temperature sensitivity analysis showing observed 
duration from planting to panicle initiation (PL–PI), panicle initiation 
to heading (PI–HD), and heading to R7 (HD–R7) versus mean 
temperature during that stage. Regression slope coefficients are 
indicated for each stage with a * and **, indicating significance at p 
< 0.05 and p < 0.001, respectively (the coefficient of HD–R7 was 
not significant). Slope coefficients followed by the same letter are 
not significantly different (p < 0.05) from one another based on an 
analysis of covariance.
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Tardieu, 2012), in which there is no metabolic activity 
under Tb, and metabolic activity slows down above Topt. 
More complex mechanisms, such as changes in mem-
brane state (Hughes and Dunn, 1996) and regulation 
through “thermostat genes” (Deal and Henikoff, 2010), 
have been suggested. Optimization of the DD_2S and 
DD_3S models identified different optimal temperatures 
for pre- (PL–PI and PI–HD) and postheading (HD–R7) 
stages. Employing stage-dependent temperature param-
eters in the DD_2S model for pre-and postheading stages 
improved the model performance for the PL to HD stage 
compared with DD_Opt. Going further to a three-stage 
optimization (DD_3S) resulted in higher model accu-
racy (RMSE and b) than DD_2S for the PL to HD stage. 
Improved model precision with DD_3S and the results 
of the temperature sensitivity analysis suggest that devel-
opment of stage-dependent temperatures is important for 
improving model accuracy, and that the benefits of this 
are primarily seen in the early season (PL–PI). However, 
for the PI to HD and HD to R7 stages, which are less 
sensitive to temperature, DD_3S was comparable with 
DD_Opt. Given the difficulty of identifying PI, this data 
is not commonly collected; however, HD or flowering 
data is routinely collected. Our data clearly indicate that, 
in the absence of PI data, the DD_2S approach is still 
better than the DD_Opt in terms of both accuracy and 
systematic error for estimating time to heading.

Results from the DD_2S and DD_3S models show 
that Tb is highest early in the season (Table 2). In the 
DD_2S model, the cultivar average Tb for the preheading 
stage (PL–HD) was 10.7°C, compared with 8.9°C during 
the HD to R7 stage. The DD_3S model further refined 
this result to demonstrate that higher Tb occurs primarily 
during the PL to PI stage. Similar results have been shown 
for wheat (Slafer and Rawson, 1995; Wang and Engel, 
1998). These results also substantiate the findings of van 
Oort et al. (2011) that Tb in the postflowering stage (HD–
R7) is noticeably lower than in the preflowering stage.

Our results (DD_3S, Table 3) also show that cultivar 
average Topt increased from PL to R7. Slafer and Rawson 
(1995) also reported a similar trend in wheat. Most studies 
assume that Topt is constant across crop development and 
that it varies between 28 and 30°C, depending on cultivar 
(Gao et al., 1992; Yin et al., 1997; Zhang et al., 2008). 
Across cultivars, the DD_3S model estimates for Topt were 
27.7°C for PL to PI, 31.2°C for PI to HD, and 32.9°C for 
HD to R7. The decreases in Tb and the increases in Topt 
from PL to PI, PI to HD, and HD to R7 indicate that 
the slope of thermal time accumulation between Tb and 
Topt is less steep in PI to HD and HD to R7 (i.e., the rate 
of development is slower) than in the PL to PI stage, and 
that thermal time increases less with each 1°C increase in 
temperature during PI to HD and HD to R7 than during 
PL to PI (van Oort et al., 2011).

Compared with DD_3S, the DD_Opt model had sig-
nificantly higher b during PL to PI and lower b during PI 
to HD. For example, a 4°C difference in average tempera-
ture between cold and warm years, and a systematic error 
of 1.8 d °C−1 (as for PL–PI), results in a model phenology 
prediction bias of 7.2 d (4°C ´ 1.8 d °C−1). A reduction of 
b to 0.6 d °C−1 in DD_3S reduces the phenology predic-
tion bias to 2.4 d (4°C ́  0.6 d °C−1). All optimized models 
showed similar systematic error in HD to R7 (b  = 0.5–
0.6 d °C−1). Furthermore, our results from the DD_3S 
model for P to PI suggest that the higher systematic error 
in DD_Opt during PL to PI may in fact be due to using 
constant temperature parameters. Using stage-dependent 
temperature parameters in DD_3S reduced b by 1.2 d 
°C−1. Overall, the systematic error observed in this study 
was much smaller (b  < 2 d °C−1 and mostly close to 
zero) than error observed by van Oort et al. (2011), who 
reported b between −6.7 and 3.5 d °C−1. Nevertheless, 
the results clearly show the importance of optimization 
of cardinal temperatures, plus the use of stage-dependent 
temperature parameters, in reducing systematic error.

ConCluSion
Optimizing cardinal temperature parameters in the 
DD_Opt model improved model accuracy and decreased 
systematic error (especially during PI-HD stage) com-
pared with DD10. Models that predict crop phenological 
stages based on temperature ignore the critical changes in 
crop response to temperature at different developmental 
stages. We demonstrated that plant response to tempera-
ture decreases with development towards R7; HD to R7 
is not responsive to temperature and preheading stages 
are most responsive to temperature. Consequently, results 
also show that optimal temperature values differed across 
developmental stage. The base temperature is lower in 
the postheading stage than in the preheading stage, while 
optimum temperature is lower in preheading and is higher 
in postheading. Improved model accuracy with DD_2S 
and DD_3S and the results of the temperature sensitivity 
analysis suggest that using stage-dependent temperatures 
is important for improving model accuracy, especially in 
the early season (reducing systematic error during PL–
PI). These results have implications for the performance 
of climate change-related studies, breeding, and yield gap 
analysis that utilize models such as DD10 and Oryza2000.
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