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The efficacy of crop management is highly sensitive to the timing of operations. This study tested the
hypothesis that using site-specific, real-time temperatures to predict weed emergence at the regional
scale can improve the timing of weed management in stale-seedbed and drill-seeded rice (Oryza sativa)
relative to the use of regional emergence averages that incorporate the spatiotemporal variability. First,
thermal models of emergence for smallflower umbrella sedge (Cyperus difformis) and watergrass (Echino-
chloa ssp.), two of the most problematic weeds in California’s direct-seeded rice system, were developed
from field-scale observations made across 3 sites and 2 years. The models predicted smallflower umbrella
sedge and watergrass emergence in an independently collected dataset with accuracy [root mean square
error (RMSE) = 21% emergence and 1.3 d; model efficiency index (EF) = 0.80; and RMSE = 14% emergence
and 2.2 d; EF = 0.88, respectively]. Subsequently, in order to quantify the degree to which spatially and
temporally precise temperatures affect predicted emergence at the regional scale, the models were
applied to a daily regional temperature dataset precise to 2 km � 2 km. For each species, the number
of days to emergence was simulated for 48 dates (April 15–June 1), 9 years (2003–2011), and 193 loca-
tions in the Sacramento Valley rice growing region (83,376 total emergence predictions per species). The
variability of the resulting emergence predictions due to the intra-annual, inter-annual and spatial het-
erogeneity of temperatures was measured with a linear model. Each of the spatiotemporal effects
affected the emergence predictions (P < 0.001), with the temporal effects (intra- and inter-annual vari-
ability) having the greatest impact on predicted emergence. In management terms, using site-specific,
real-time temperatures to predict weed emergence would have improved the timing of weed manage-
ment by as much as 14 days for smallflower umbrella sedge and 12 days for watergrass when compared
to using regionally-specific averages that ignored spatiotemporal variability for the simulated period.
These results argue for further efforts to merge phenological models with spatiotemporally-specific envi-
ronmental data in order to improve their accuracy when applied to real-time management decisions.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In any cropping system, the timing of weed control is crucial to
its efficacy (Swanton and Murphy, 1996). Much effort has been
made to predict the timing of key developmental stages of weeds
as a means of maximizing the impact of management events aimed
at their control (Holst et al., 2007). Weed emergence is a key phe-
nological event that is primarily explained by temperature and
moisture (Bradford, 2002; Grundy and Mead, 2000). Where water
is not limiting (e.g. irrigated cropping systems), accumulation of
temperatures within a weed’s physiologically relevant range (ther-
mal time) can alone predict germination and early growth with
accuracy (Grundy, 2003). With the growing availability of environ-
mental data at ever-finer spatial and temporal resolutions (Hart
et al., 2009; Hijmans et al., 2005), the potential exists to improve
the accuracy of phenological models applied at regional scales by
improving the precision of their input data (Kriticos and Leriche,
2010; Miller et al., 2004, 2007; Shaw, 2005). Therefore, as the driv-
ing variable in weed emergence models, the precision of the tem-
perature input may affect the accuracy of an applied model as
much or more as the model parameterization itself.

Rice (Oryza sativa) is the most widely consumed staple food in
the world (Maclean et al., 2002), and weeds are the major biolog-
ical constraint to its productivity (Ni et al., 2000). Weed control
represents a significant portion of input costs and management
effort in rice cropping systems (Pandey et al., 1999). As a
semi-aquatic plant, rice has been transplanted and grown under
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flooded conditions for millennia, primarily as a means of weed sup-
pression (Rao et al., 2007). However, the diminishing availability of
water and labor, combined with improvements in herbicide and
mechanization technology are leading to an increase in direct-
seeded rice systems across the world (Farooq et al., 2011). Because
weed and rice plants emerge in closer temporal proximity in di-
rect-seeded than in transplanted systems, weed competition is
generally greater in direct-seeded rice (Hill et al., 1994). As a result,
weed control in direct-seeded rice systems is a research priority of
growing importance (Rao et al., 2007).

The approximately 200,000 ha of rice grown in California’s Sac-
ramento Valley has long been direct-seeded. California rice has
among the highest number of herbicide resistant weed species in
the United States (Heap, 2012) due, in part, to a reliance on herbi-
cides for weed control and soils that offer limited options in terms
of crop rotation (Hill et al., 1994; Pittelkow et al., 2012). As a re-
sponse to the growing problem of herbicide resistant weeds
(Fischer et al., 2000; Osuna et al., 2002), the use of stale seedbed
and drill-seeded systems with intermittent early-season flooding
has been investigated in recent years (Pittelkow et al., 2012). These
establishment systems attempt to diversify the weed recruitment
environment and herbicides used while also improving the timing
and efficacy of herbicide applications, thereby reducing selection
pressure for herbicide resistance as well as reducing the overall
usage of herbicides (Fischer et al., 2009).

In both establishment systems, a moist, primarily aerobic seed-
bed rapidly recruits problematic weeds such as watergrass (Echino-
chloa phyllopogon and Echinochloa oryzoides) and smallflower
umbrella sedge (Cyperus difformis) (Pittelkow et al., 2012), which
are resistant to a broad range of herbicides and cause the most eco-
nomic damage in the California rice system (Fischer et al., 2000;
Osuna et al., 2002). In the stale seedbed system, once maximum
weed emergence has been attained, a broad-spectrum herbicide
for which resistance has not yet evolved (such as glyphosate) is ap-
plied to the weed foliage. The field is subsequently flooded, and
rice is seeded aerially without further seedbed disturbance. A
post-emergence herbicide (such as propanil) can be used later to
control weeds that might escape the stale seedbed treatment.
The drill seeded system typically employs propanil and pendi-
methalin to control watergrass with multiple resistance. These
herbicides are usually mixed and applied to the non-flooded seed-
bed after a critical growth threshold is reached and prior to the
permanent flood (CRPW, 2011). Further management details for
these systems can be found in Pittelkow et al. (2012), Linquist
et al. (2008) and in Section 2 of this paper. Both systems have
shown promise as alternatives to the conventional establishment
systems in terms of weed control and rice yield (Pittelkow et al.,
2012).

Despite the promise of these systems, their efficacy is sensitive
to the timing of herbicide applications. Also, in the case of the stale
seedbed, planting of rice must be delayed to allow for weed emer-
gence and sufficient foliage exposure to the herbicide application.
This affects rice variety choice and introduces late season risk of
low temperature induced spikelet sterility (blanking) if rice is
planted too late in the season (Board and Peterson, 1980). As a re-
sult, information on the timing of weed emergence and early
growth in alternative stand establishment systems is necessary
for farmers to be able to implement effective weed management.

Hart et al. (2009) combined surface measured climate variables
with remote sensed climate variables to interpolate maximum and
minimum air temperatures (among other variables) on a
2 km � 2 km grid throughout California. Data are available on a
daily interval between 2003 and the present day (COMET, 2012).
Preliminary analysis of these interpolations indicated that temper-
ature is relatively uniform across the Sacramento Valley rice
growing region for the majority of the growing season. However,
early in the growing season [during the weed recruitment period
for alternative establishment systems (April 15–June 1)], the accu-
mulation of thermal time may vary across space and time due to
orographically induced climate variation caused by the presence
of the Sutter Buttes (Wright et al., 2006) and the inter-annual var-
iability of climate phenomena such as El Niño—Southern Oscilla-
tion (Dettinger et al., 2004). Further, the base temperature
(lowest temperature required for physiological activity) for small-
flower umbrella sedge germination is greater than average night-
time lows during the period of interest, which is in contrast to
base temperature estimates for watergrass germination (Boddy
et al., 2012; Pedroso, 2012). As such, the spatial and temporal dis-
tribution of physiologically relevant temperatures may not be uni-
form among weed species.

This study employed a historical simulation to test the hypoth-
esis that the use of site-specific, real-time temperatures to predict
rice weed emergence can improve the timing of weed manage-
ment in stale-seedbed and drill-seeded systems relative to man-
agement decisions informed by average regional emergence over
the same period. The objectives of the study were threefold. The
first was to develop and validate thermal-unit driven emergence
models for smallflower umbrella sedge and watergrass based on
field-scale observations. The second objective was to apply these
models with a regional temperature data set accurate to
2 km � 2 km (COMET, 2012) in order to predict emergence across
9 years of historical data. The final objective was to quantify the
degree to which the intra-annual, inter-annual and spatial variabil-
ity affected the simulated emergence in order to illustrate the va-
lue of using site-specific, real-time data to inform decision support
tools.
2. Methodology

2.1. Model development: data collection

In 2010 and 2011 emergence of smallflower umbrella sedge and
watergrass was observed in three rice fields where their presence
had been confirmed the previous growing season. One of the fields
(location 1: 39�3305100N, �122�401400W) was managed as a stale
seedbed, while the other two fields (location 2: 38�5304300N,
�121�4304300W; and location 3: 39�0003500N, �121�4202900W) were
drill seeded fields (see Fig. 1). Fields were 8.1–11.2 ha in size.
The soils in two of the three fields were Mollisols (locations 1
and 3) and the other was a Vertisol (location 2).

Although overall crop management differs between stale seed-
bed and drill seeded fields in California rice, both management sys-
tems employ irrigation flushes during the first 2–4 weeks of the
growing season to encourage the rapid emergence of weeds, which
are then eliminated via post-emergence herbicide application. As a
result, water management during the period of observation was
similar between the three fields and resulted in a moist to near-
saturated soil surface during the periods of observation.

Following pre-season tillage [which included passes with a
chisel plow, disc, tri-planer, and soil roller (stale seedbed) or
drill-seeder], 4–8 main plots per field were established in areas
of substantial weed infestation as reported by the growers. Main
plots were 5 � 10 m in size and were bisected lengthwise by an
elevated 6 m wooden plank that served as an observation platform
to prevent soil surface disturbance within the plot. Air temperature
(1.5 m above the soil surface) was recorded at the center of the
main plot at 15 min intervals via a shielded Onset Hobo U23 Pro
v2 External Temperature Data Logger. Soil temperature at 2 cm
depth was also recorded at the same interval with the same equip-
ment in the center of the plot. Each main plot contained four
0.3 m � 0.3 m subplots, situated at least 1 m apart and established



Fig. 1. Image depicts the spatial variability of simulated days-to-emergence for selected start dates. The dates represent the species-specific maximum and minimum spatial
variability of emergence predictions for all start dates from April 15 to June 1 during the 2010 season. Emergence was simulated using Eq. (1), the parameters presented in
Table 1, and air temperatures interpolated on a 2 km � 2 km grid for areas under rice cultivation in the Sacramento Valley (193 total locations). The sites where development
and validation of the emergence models occurred are also depicted.
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in areas that were representative of the main plot emergence on
the first day that emergence was observed.

Emergence observations were made daily in 2011 and every 1–
2 days in 2010 beginning from the first irrigation event (the ‘‘start
date’’) until no further increases in emergence had occurred for at
least 3 days. The number of seedlings in each subplot was counted
as soon as the seedlings were visually identifiable by species. Gen-
erally, this was the first day of emergence for smallflower umbrel-
la sedge (<0.5 cm in shoot height) and 1–2 days after initial
emergence (approximately 1 cm in shoot height) for watergrass.
Given their abundance, smallflower umbrella sedge seedlings
were not removed, but recounted, while watergrass seedlings
were removed after being counted. Daily subplot totals were re-
corded on an absolute basis and then calculated as a proportion
of the maximum (smallflower umbrella sedge) or total (water-
grass) number of plants counted in the subplot during the entire
observation period. Proportional emergence for the main plot
was calculated as the mean of the proportional emergence for
the four subplots on a given day of observation. In one field (loca-
tion 1), observations were made in both 2010 and 2011, while in
locations 2 and 3 counts were made in 2010 and 2011, respec-
tively. This resulted in a total of 4 site-year and 63 site-day obser-
vations per species.

A validation dataset was collected in 2010 at a site located 33–
62 km from the other fields (39�270300N, �121�430900W; see Fig. 1).
At this site, observations were made as described before but every
5–7 days in two basins (3.2 and 1.5 ha in size) with stating dates
2 weeks apart for a total of 5 site-day observations for smallflower
umbrella sedge and 8 site-day observations for watergrass.
2.2. Model development: statistical analysis

Using the ‘nlme’ package (Pinheiro et al., 2011) in R 2.11.1
(2010), a non-linear, mixed-effects model was fit to proportional
emergence and base-temperature modified air temperature (ther-
mal units) using the sigmoidal function:

E ¼ 1=ð1þ exp½�ðTU� TU50%Þ=Erate�Þ ð1Þ

where E = emergence; TU = cumulative thermal units; TU50% = -
cumulative thermal units at 50% emergence; and Erate = rate of
emergence (Eq. (1)), as in Chauhan and Johnson (2009b). Thermal
units (TU) were determined by subtracting a base-temperature
(BT) from the air temperature measurements (T) and summing
the results cumulatively over time (t, days):

TU ¼
Xn

i

max½ðTi � BTÞ�Dti ð2Þ

for Dti = 15 min and TU such that, if Ti < BT, (Ti � BT) = 0 (McMaster
and Wilhelm, 1997). Base temperatures were initialized at 17.5 �C
for smallflower umbrella sedge (Pedroso, 2012) and 9.3 �C for
watergrass (Boddy et al., 2012). The resulting TU accumulation
was matched to observed proportional emergence for each plot.
The fixed parameters TU50% and Erate were fit iteratively via maxi-
mum likelihood and an autoregressive correlation structure to ac-
count for the repeated nature of the measurements. The effects on
TU50% of site-year were designated as random. Subsequently, base
temperatures were incrementally modified 0.05 �C in both positive
and negative directions. The resulting models were iteratively com-
pared for significant differences using a 1 degree of freedom chi-
squared distribution test on the log-likelihood difference. A range
of base temperature values resulting in models that were not signif-
icantly different (P < 0.025) from the best fit was determined. The
midpoint of this range was designated as the base temperature
and used to fit a final model for each weed species. Independently
distributed errors and normality were assessed graphically via
Q–Q, residual–predicted, and lagged residual–residual plots.

Using spatially and temporally specific maximum and mini-
mum daily air temperature interpolations accurate to 2 km � 2 km
(Hart et al., 2009; COMET, 2012), thermal units were calculated
according to the double triangle method (Roltsch et al., 1999; Sev-
acherian et al., 1977) for the dates and location where the valida-
tion dataset was collected. The parameters from the
aforementioned models were combined with the spatiotemporally
specific thermal units to produce emergence predictions for com-
parison with the validation dataset. Subsequently, the root mean
square error (RMSE) and modeling efficiency index (EF) of the pre-
dicted versus observed values were calculated as in Loague and
Green (1991) such that a perfect model fit would result in a
RMSE = 0 and an EF = 1.

2.3. Spatiotemporal simulation

Using the species-specific parameter results from the aforemen-
tioned thermal-unit-driven emergence models and the double tri-
angle thermal unit calculation method (Roltsch et al., 1999;
Sevacherian et al., 1977), the number of days to emergence was
predicted for each location on a 2 km � 2 km grid in the Sacra-
mento Valley rice growing region. There were 193 location-specific
COMET (2012) air temperatures where rice was grown in the Sac-
ramento Valley for all years from 2003 to 2011 (n = 9) and all dates
from April 15 to June 1 (n = 48). This totaled 83,376 spatiotempo-
rally specific emergence predictions per species. The data was re-
trieved and manipulated with PHP. Predicted, proportional
emergence was rounded to 1 at 0.99, and the number of calendar
days that had elapsed between emergence = 0 (the ‘‘start date’’)
and emergence = 1 was designated as the ‘‘days-to-emergence’’
for each location-year-date combination.

Spatial variability was analyzed in the following manner. For
each location, a species-specific days-to-emergence prediction
(n = 193) was projected in NAD 1983—California Teale Albers,
interpolated via the inverse distance weighted method, and
clipped to represent only those areas where rice was grown in
2010 according to the California Department of Water Resources
(CDWR, 2012) using the ArcMAP10 version of ArcGIS mapping
software (ESRI, 2011). Visual color delineations were created by
calculating the number of predicted days-to-emergence between
the minimum and maximum values and grouping locations by
shade according to their distance from the minimum value in
1 day increments. The spatial lag distance (distance at which two
randomly selected points in the population are uncorrelated) and
the correlation structure of these data were determined visually
using variogram plots.

Spatial and temporal variability was further characterized sta-
tistically using the ‘lm’ function of the base package and the ‘lme’
function of the ‘nlme’ package (Pinheiro et al., 2011) in R 2.11.1
(2010). First, a simple linear model was fit to the species-specific
simulation results by apportioning the variance of the spatiotem-
porally-specific days-to-emergence responses according to the
grouping factors ‘‘start date’’, ‘‘year’’ and ‘‘location’’ to account for
the intra-annual, inter-annual, and spatial variability, respectively.
After confirming the significance (P < 0.001) of the grouping factors
via one-way ANOVA, for each start date from April 15 to June 1, a
linear, mixed-effects model was fit to the data such that the vari-
ance in days-to-emergence was explained by the fixed effect of
‘‘location’’ and the random effect of ‘‘year.’’ The effect of location
incorporated a spherical correlation structure with a lag distance
initialized at 50 km based on the aforementioned variogram plots
of the mean spatial variability across all start dates and years. In
addition to the models fit to each start date during the period of
interest, for each location, a mean days-to-emergence for all start



Table 1
Parameter values and associated errors for mixed, non-linear regressions fit, using the sigmoidal in Eq. (1), to observations of smallflower umbrella sedge (Cyperus difformis) and
watergrass (Echinochloa ssp.) emergence across 2 years and 3 sites in rice fields managed with early-season irrigation flushes. TU50% = thermal time to 50% emergence; Erate = rate
of emergence; BT (�C) = base temperature. See Fig. 2 for graphical representation.

Smallflower umbrella sedge Watergrass

Fixed effects Random effects Fixed effects Random effects

Parameter value ±
standard error

95% Confidence
interval

P-value Standard deviation
(TU50%)

Parameter value ±
standard error

95% Confidence
interval

P-value Standard deviation (TU50%)

TU50% 28.02 ± 3.85 16.55–46.85 <0.001 Year 0.01 TU50% 106.47 ± 6.91 82.09–135.95 <0.001 Year 7.26
Erate 0.67 ± 0.08 0.52–0.81 <0.001 Site 7.20 Erate 17.14 ± 1.30 14.63–19.65 <0.001 Site 8.16
BT (�C) 15.55 15.10–16.00 <0.05 Residual 0.05 BT (�C) 8.88 8.50–9.25 <0.05 Residual 0.07
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dates from April 15 to June 1 was calculated. These data were ana-
lyzed with the same mixed effect model as the individual start
dates (fixed effect = spatially autocorrelated location; random ef-
fect = year) to determine the overall proportional variance attribut-
able to location during the period of rice establishment.
Independently distributed errors and normality were assessed
graphically via Q–Q and residual–predicted plots.
Fig. 2. Observed and predicted emergence of smallflower umbrella sedge (Cyperus
difformis) and watergrass (Echinochloa ssp.) in rice fields with flushed early-season
irrigation management. Observations represent site-day means from 4 site-year
combinations. Emergence was modeled using a mixed, non-linear model and the
sigmoidal in Eq. (1). See Table 1 for presentation of associated model parameters.
3. Results

3.1. Temperature based emergence models

Although both soil and air temperatures were recorded at the
plot level, under the saturated but predominantly aerobic soil con-
ditions which emergence observations were recorded, air temper-
atures provided a more consistent model fit across experimental
units (data not shown) and were therefore used to fit the emer-
gence models. Smallflower umbrella sedge emerged more quickly
than watergrass, and its emergence was more variable. A base tem-
perature range of 15.10–16.00 �C provided the best fit of the sig-
moidal (Eq. (1)) to observed smallflower umbrella sedge
emergence (Table 1). Meanwhile, a range of 8.50–9.25 �C resulted
in the best fit for watergrass (Table 1). In addition to the higher
base temperature, smallflower umbrella sedge required fewer
cumulative thermal units to achieve 50% emergence
(TU50% = 28.02 ± 3.85) than watergrass (TU50% = 106.47 ± 6.91) and
exhibited a more rapid rate of emergence as well (Table 1;
Fig. 2). Additionally, the proportional variability of the year-spe-
cific site effect was greater for smallflower umbrella sedge than
for watergrass (standard deviation of TU50% = 7.20/28.02 and
8.16/106.47, respectively) (Table 1), which is, in part, a result of
the narrower thermal unit window (distance between the base
temperature and the daily high temperature) for smallflower um-
brella sedge relative to watergrass. Lending confidence to the
parameterization reported here, the modeled emergence for both
species largely agreed with the observed emergence in the inde-
pendently collected validation dataset, resulting in RMSE values
of 21% emergence and 1.3 days and 14% emergence and 2.2 days,
and EF values of 0.80 and 0.88 for smallflower umbrella sedge
and watergrass, respectively (Table 2). It should be noted that a
second cohort of smallflower umbrella sedge was observed emerg-
ing later in the season after the permanent flood, and this emer-
gence is not captured by our model.

3.2. Multi-year, regional weed emergence simulation for the period of
rice establishment

When the models reported in Table 1 and Fig. 2 were applied to
the multi-year, multi-start date, and multi-location temperature
dataset, the spatial and temporal precision of the temperatures
greatly influenced the predictions. For both smallflower umbrella
sedge and watergrass, the simulated days-to-emergence were
affected by intra-annual, inter-annual and spatial variability
according to a simple linear model of the effects (P < 0.001). Hold-
ing intra-annual variability constant, modeling inter-annual vari-
ability as a random effect, and accounting for spatial
autocorrelation also resulted in an effect of location on the number
of days to emergence (P < 0.001). Across all starting dates from
April 15 to June 1, the mean days-to-emergence among locations
ranged from 19.6 to 8.8 days and 31.9 to 20.4 days for smallflower



Table 2
Observed and predicted percent emergence (%) for smallflower umbrella sedge (Cyperus difformis) and watergrass (Echinochloa ssp.). Observed data was collected independently
of model development (see Fig. 1 for locations). Predicted data was produced using the models presented in Fig. 2 and Table 1. RMSE = root mean square error; EF = model
efficiency index. A perfect model fit would result in a RMSE = 0 and an EF = 1.

Cumulative thermal units Observed emergence (%) Predicted emergence (%) 95% Confidence interval (%) Observed days (d) Predicted days (d)

Smallflower umbrella sedge
3.2 0 <1 <1–<1 3 3

22.7 0 <1 <1–95 11 11
52.3 53 100 7–100 7 4
61.1 100 100 100–100 18 18
92.5 100 100 100–100 12 12

RMSE = 21% emergence; 1.3 days
EF = 0.80

Watergrass
13.5 0 <1 <1–3 3 3
67.1 0 9 3–21 11 6
91.8 58 30 10–62 7 9

145.3 70 91 62–99 18 17
166.2 80 97 82–100 12 10
223.5 100 100 99–100 17 17
237.2 100 100 99–100 26 26
283.2 100 100 100–100 21 21

RMSE = 14% emergence; 2.2 days
EF = 0.88
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umbrella sedge and watergrass, respectively (Fig. 3, Table 3). Dur-
ing this period, the effect of location resulted in a standard error in
the emergence prediction of 2.4–1.0 days for smallflower umbrella
sedge and 1.8–0.6 days for watergrass (Fig. 3, Table 3). Meanwhile,
the standard deviation for the random effect of year ranged from
6.8 to 2.7 days and 5.1 to 1.6 days for smallflower umbrella sedge
and watergrass, respectively (Fig. 3, Table 3). While days-to-emer-
gence generally decreased with increasing temperatures between
April 15 and June 1 (Fig. 3), the large intra-annual temperature var-
iability enabled exceptions to this trend (e.g., as illustrated in Fig. 4,
smallflower umbrella sedge required fewer days to emerge on
April 27, 2011 than on May 9, 2011).

Among location, start date and year, the temporal (intra- and
inter-annual) effects explained the greatest proportion of the vari-
ability (Fig. 3, Table 3). Nonetheless, the effect of location on the
number of days to emergence explained approximately 11% of
the modeled variability in smallflower umbrella sedge emergence
(F-value = 14.23(location)/129.23(intercept)) and 4.5% of the mod-
eled variability in watergrass emergence (F-value = 21.01(loca-
tion)/468.8(intercept)) across means of the entire period of rice
establishment for all years simulated. This spatial heterogeneity
of predictions varied intra-annually with the lag distance (distance
at which two randomly selected points in the population are
uncorrelated) averaging 60.8 km but ranging from 45.0 to
161.4 km for smallflower umbrella sedge and averaging 45.0 km
but ranging from 24.1 to 79.1 km for watergrass across the
125 � 70 km region of interest (Table 3).

In management terms, in the most extreme cases within the
years given in Figs. 1 and 4 (2010 and 2011), using site-specific,
real-time temperatures to predict emergence resulted in an
improvement in accuracy of 14 days for smallflower umbrella
sedge and 12 days for watergrass compared to applying the aver-
age emergence for the simulated period (Table 3).

4. Discussion

Although soil temperatures are what seeds experience and are
predominantly used to model weed emergence (Forcella et al.,
2000), the use of physiologically relevant air temperatures in the
empirical models reported here was effective in explaining large
portions of the variability (Fig. 2). If the cumulative thermal units
derived from both soil and air temperatures had not been as
closely correlated as they were in this experiment (data not
shown), air temperature might not be as appropriate an input var-
iable. However, in this case, air-temperature driven models re-
sulted in agreement with the independently collected validation
data (Table 2), further confirming the general utility of the thermal
time approach to empirical weed emergence modeling (Bradford,
2002; Grundy and Mead, 2000; Leguizamon et al., 2005; Masin
et al., 2010).

A wide range of base temperatures (6.5–13.85 �C) has been re-
ported for early development of Echinochloa ssp. (Gardarin et al.,
2009; Masin et al., 2010; Steinmaus et al., 2000; Swanton et al.,
2000; Wiese and Binning, 1987). However, only recently have base
temperature ranges been estimated for smallflower umbrella
sedge and watergrass germination that are specific to the biotypes
of California’s rice growing region (Boddy et al., 2012; Pedroso,
2012). Using these recent germination estimates to initiate the
model fitting procedure narrowed the maximum likelihood region
(Lindstrom and Bates, 1990) and resulted in base temperature
ranges for the field observations of both smallflower umbrella
sedge and watergrass emergence (Table 1) that agreed with the
base temperatures for germination developed at the laboratory
scale by Boddy et al. (2012) and Pedroso (2012). This agreement
may be due to the fact that the ‘‘emergence’’ observed in this study
was primarily comprised of the germination events modeled by
Boddy et al. (2012) and Pedroso (2012) plus a small degree of early
growth. Nevertheless, emergence is governed by a complex set of
environmental interactions, which are best understood via more
comprehensive experimental methodologies than those employed
here (see Boddy et al., 2012).

While the results reported here confirm that temperature is a
determining environmental variable for weed emergence, large
portions of the variability are unexplained by temperature alone
(see 95% confidence intervals in Table 1 and Fig. 2). Osmotic poten-
tial has also been widely shown to influence seed germination
(Bradford, 2002; Forcella et al., 2000), including for smallflower
umbrella sedge (Chauhan and Johnson, 2009a,b; Pedroso, 2012)
and Echinochloa ssp. (Boddy et al., 2012; Boyd and van Acker,
2004). Soil moisture and osmotic potential were not measured in
the fields or accounted for in the models reported here. They were,
however, controlled to a certain extent by selecting fields for
observation where early-season water was managed similarly
(periodic flushes to ensure moist but predominantly aerobic



Fig. 3. Simulated days-to-emergence for each start date from April 15 to June 1 and
the associated error due to the effects of location and year for smallflower umbrella
sedge (Cyperus difformis) and watergrass (Echinochloa ssp.). Data includes 9 years
(2003–2011) of temperature data precise to 2 km � 2 km in locations where rice is
grown in the Sacramento Valley (193 total locations). Simulated values in are
summarized in Table 3.
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conditions). Nevertheless, it is likely that portions of the unex-
plained variability in these emergence models are due to differ-
ences in osmotic conditions between sites and years. Finally, it
should be mentioned that a single-parameter, temperature-based
model developed under a narrow set of management circum-
stances must be cautiously applied in non-analogous situations
(e.g. a continuously flooded field).

The relative differences in emergence parameters between the
two weeds are indicative of their distinct competitive strategies
Table 3
Summary of simulated days (d) to emergence for each start date from April 15 to June 1 an
sedge (Cyperus difformis) and watergrass (Echinochloa ssp.) as modeled via linear mixed
2 km � 2 km in locations where rice is grown in the Sacramento Valley (193 total location

Effect Smallflower umbrella sedge

Range

Start date (intercept) 19.56–8.77 d
Location (standard error) 2.41–0.96 d
Year (standard deviation) 6.82–2.69 d
Lag distancea 45–161.4 km

a Distance at which two randomly selected points in the population are uncorrelated
and help to explain differences in the proportional variability be-
tween the two species. Smallflower umbrella sedge can complete
its vegetative and reproductive stages in roughly one third of the
time required by rice (Chauhan and Johnson, 2009a); meanwhile
the phenology of watergrass from emergence to heading closely
mimics that of the rice plant (Yamasue, 2001). The rapid life-cycle
and narrower range between its base temperature and the daily
maximum temperatures would tend to exacerbate temperature-
related variability in smallflower umbrella sedge emergence. In
contrast, the slower rate of watergrass development and larger
range between its base temperature and daily maximum tempera-
tures would provide a larger temporal interval over which to inte-
grate temperature-related variability relative to smallflower
umbrella sedge. Indeed, such differential effects of temperature-re-
lated variability between the two species are demonstrated by the
greater proportional variability observed for the time to 50% emer-
gence (Fig. 2, Table 1) and the year-specific effect of site for small-
flower umbrella sedge (Table 1). The simulation results, which held
the error from the emergence models constant and only considered
the variable effects of temperature over space and time, illustrate
this difference in absolute terms (number of days) as well. Both
the means and the maxima of the ranges of variability due to the
effects of year and the location were greater for smallflower um-
brella sedge than for watergrass (Fig. 3, Table 3). Additionally,
the lag distance (Table 3) and the absolute difference between pre-
dicted days-to-emergence (e.g. Figs. 1 and 4) were more variable
for the simulated smallflower umbrella sedge emergence relative
to watergrass.

Interspecific differences aside, the simulations demonstrate
that spatiotemporally precise temperature inputs greatly affect
weed emergence predictions at the regional scale. Between the
earliest and latest starting dates considered, based solely on chang-
ing the intra-annual starting date from April 15 to June 1, the 9-
year average regional emergence predictions changed by as much
as 10.8 and 11.5 days for smallflower umbrella sedge and water-
grass, respectively (Fig. 3, Table 3). In addition, during this same
period of interest, the standard deviation for the inter-annual var-
iability was as high as 6.8 and 5.1 days (Fig. 3, Table 3). Although
the spatial variability was small in proportion to the temporal var-
iability, it was highly significant nonetheless (P < 0.001), with the
standard error for the effect of location as high as 2.4 and 1.8 days
(Fig. 3, Table 3) across all years. Furthermore, the lag distance esti-
mates indicated that, on average, emergence predictions were im-
proved by spatially explicit temperatures when locations were at
least 61 and 45 km apart for smallflower umbrella sedge and
watergrass, respectively (Table 3). Due to the size of the dataset,
it was not computationally possible (due to memory limitations)
to test for an interaction between spatial and temporal effects di-
rectly. However, the wide range of lag distances during the periods
of interest (Table 3), the changing magnitude of the effect of loca-
tion across the intra-annual simulation period (Fig. 3), and the
changing spatial distribution of emergence predictions at various
points in time (Figs. 1 and 4) indicate a possible interaction.
d the associated error due to the effects of location and year for smallflower umbrella
effects models. Data includes 9 years (2003–2011) of temperature data precise to
s). See Fig. 3 for graphical representation of simulation data.

Watergrass

Mean Range Mean

13.04 d 31.89–20.44 d 25.0 d
1.73 d 1.81–0.58 d 1.37 d
4.89 d 5.11–1.60 d 3.9 d
60.8 km 24.1–79.1 km 45.0 km

.



Fig. 4. Image depicts the spatial variability of simulated days-to-emergence for selected start dates. The dates represent the species-specific maximum and minimum spatial
variability of emergence predictions for all start dates from April 15 to June 1 during the 2011 season. Emergence was simulated using Eq. (1), the parameters presented in
Table 1, and air temperatures interpolated on a 2 km � 2 km grid for areas under rice cultivation in the Sacramento Valley (193 total locations).
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The simulation results are, to a degree, intuitively obvious: a
temperature-bound process will clearly vary in warmer or cooler
regions, years, or parts of the growing season. What is less obvious
is how greatly the processes can vary within the spatiotemporal
scales reported here. In practical terms, each effect modeled from
the simulation results (location, year and start date) influenced
the predicted days-to-emergence by days on its own (Fig. 3, Ta-
ble 3), and, in extreme cases, by weeks when combined (Figs. 1
and 4). Compared to using a species-specific average emergence
to guide weed management recommendations for this region and
period of interest, management that is informed by site-specific,
real-time temperatures used to predict weed emergence would
be better timed. For weed management strategies that depend on
precision timing for weed control, such improvements could
greatly influence the utility of decision support tools and, by exten-
sion, the success or failure of a weed control strategy.

For example, a rice grower trying to optimize the timing of
smallflower umbrella sedge control in the coolest part of the Sac-
ramento Valley would have had to wait 12 days for emergence if
flushing began on May 2, 2011, 17 days if flushing began 1 day la-
ter, and 29 days if it began 1 week later. A year earlier, the same
grower would have seen emergence occur in 15, 16 and 22 days
on the same starting dates. Meanwhile, a grower in the warmest
part of the valley would have seen smallflower umbrella sedge
emergence in 11, 11 and 21 days on those same dates in 2011. Fur-
ther, if the original grower had used the 9-year regional average
(13 days; Table 3) to anticipate smallflower umbrella sedge emer-
gence, s/he would have been more than a week off in 2 of the 6 in-
stances. In contrast to the general trend toward warmer
temperatures and faster emergence as the season progresses
(Fig. 3), in this example the slower emergence occurred later in
the season. This somewhat counterintuitive result demonstrates
that, because emergence is a thermally, not temporally, regulated
process, where temperatures are heterogeneous, emergence will
more become more predictable if the source of variability is explic-
itly incorporated into the predictive tool. Thus, recommendations
based on average emergence that ignore spatiotemporal variability
will result in management timing that could be easily improved
upon by recommendations that are informed by site-specific,
real-time data.
5. Conclusion

Characterizing heterogeneity across temporal and spatial scales
is a fundamental problem of ecology (Levin, 1992) and agronomic
weed management (Shaw, 2005). The results presented here are a
quantitative illustration of the degree to which spatiotemporally
precise inputs can improve the accuracy of even a simple pheno-
logical model. Farmers using stale-seedbed and drill-seeded rice
establishment systems to recruit weeds would improve the timing
and efficacy of their herbicide applications by predicting weed
emergence via site-specific, real-time temperatures. Further efforts
are needed to merge site-specific environmental data with weed
emergence and other phenological models in order to produce
decision support tools that are both more accurate and more
immediately applicable to individual farmers and land managers.
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